Life Cycle Sustainability Assessment (LCSA) is an integrated method that combines environmental, economic, and social assessments. Its methodological development remains under discussion, mainly regarding the building design. This paper aims to provide a systematic, interoperable, and open-source approach towards implementing LCSA in Building Information Modelling (BIM) in five steps. A harmonized data structure that enriches BIM objects is proposed. Automation in the principal evaluation step is provided by integrating new parameters into the current Industry Foundation Classes (IFC4). A Dynamo script verifies its utility in a case study in Spain using real-time calculations and visualizations. Two alternative structural systems are assessed, and identification is made of the lowest CO2 emitter, the lowest cost, and the most beneficial system for local employment. The approach can be employed to evaluate other indicators and building systems in other countries. Challenges and limitations in the standardization and harmonization of the three dimensions are identified.
(2022). BIM-based LCSA application in early design stages using IFC [journal article - articolo]. In AUTOMATION IN CONSTRUCTION. Retrieved from https://hdl.handle.net/10446/232649
BIM-based LCSA application in early design stages using IFC
Palumbo, Elisabetta;
2022-01-01
Abstract
Life Cycle Sustainability Assessment (LCSA) is an integrated method that combines environmental, economic, and social assessments. Its methodological development remains under discussion, mainly regarding the building design. This paper aims to provide a systematic, interoperable, and open-source approach towards implementing LCSA in Building Information Modelling (BIM) in five steps. A harmonized data structure that enriches BIM objects is proposed. Automation in the principal evaluation step is provided by integrating new parameters into the current Industry Foundation Classes (IFC4). A Dynamo script verifies its utility in a case study in Spain using real-time calculations and visualizations. Two alternative structural systems are assessed, and identification is made of the lowest CO2 emitter, the lowest cost, and the most beneficial system for local employment. The approach can be employed to evaluate other indicators and building systems in other countries. Challenges and limitations in the standardization and harmonization of the three dimensions are identified.File | Dimensione del file | Formato | |
---|---|---|---|
2022_BIM.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
3.18 MB
Formato
Adobe PDF
|
3.18 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo