In the context of quantum-inspired machine learning, remarkable mathematical tools for solving classification problems are given by some methods of quantum state discrimination. In this respect, quantum-inspired classifiers based on nearest centroid and Helstrom discrimination have been efficiently implemented on classical computers. We present a local approach combining the kNN algorithm to some quantum-inspired classifiers.

(2023). Local Approach to Quantum-inspired Classification [journal article - articolo]. In INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS. Retrieved from https://hdl.handle.net/10446/234049

Local Approach to Quantum-inspired Classification

Leporini, Roberto;
2023-01-01

Abstract

In the context of quantum-inspired machine learning, remarkable mathematical tools for solving classification problems are given by some methods of quantum state discrimination. In this respect, quantum-inspired classifiers based on nearest centroid and Helstrom discrimination have been efficiently implemented on classical computers. We present a local approach combining the kNN algorithm to some quantum-inspired classifiers.
articolo
2023
Blanzieri, Enrico; Leporini, Roberto; Pastorello, Davide
(2023). Local Approach to Quantum-inspired Classification [journal article - articolo]. In INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS. Retrieved from https://hdl.handle.net/10446/234049
File allegato/i alla scheda:
File Dimensione del file Formato  
Local Approach to Quantum-inspired Classification.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 610.96 kB
Formato Adobe PDF
610.96 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/234049
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact