Software verification approaches aim to check a software component under analysis for all possible environments. In reality, however, components are expected to operate within a larger system and are required to satisfy their requirements only when their inputs are constrained by environment assumptions. In this paper, we propose EPIcuRus, an approach to automatically synthesize environment assumptions for a component under analysis (i.e., conditions on the component inputs under which the component is guaranteed to satisfy its requirements). EPIcuRus combines search-based testing, machine learning and model checking. The core of EPIcuRus is a decision tree algorithm that infers environment assumptions from a set of test results including test cases and their verdicts. The test cases are generated using search-based testing, and the assumptions inferred by decision trees are validated through model checking. In order to improve the efficiency and effectiveness of the assumption generation process, we propose a novel test case generation technique, namely Important Features Boundary Test (IFBT), that guides the test generation based on the feedback produced by machine learning. We evaluated EPIcuRus by assessing its effectiveness in computing assumptions on a set of study subjects that include 18 requirements of four industrial models. We show that, for each of the 18 requirements, EPIcuRus was able to compute an assumption to ensure the satisfaction of that requirement, and further, ≈78% of these assumptions were computed in one hour.

(2020). Mining Assumptions for Software Components using Machine Learning . Retrieved from https://hdl.handle.net/10446/236971

Mining Assumptions for Software Components using Machine Learning

Menghi, Claudio;
2020-01-01

Abstract

Software verification approaches aim to check a software component under analysis for all possible environments. In reality, however, components are expected to operate within a larger system and are required to satisfy their requirements only when their inputs are constrained by environment assumptions. In this paper, we propose EPIcuRus, an approach to automatically synthesize environment assumptions for a component under analysis (i.e., conditions on the component inputs under which the component is guaranteed to satisfy its requirements). EPIcuRus combines search-based testing, machine learning and model checking. The core of EPIcuRus is a decision tree algorithm that infers environment assumptions from a set of test results including test cases and their verdicts. The test cases are generated using search-based testing, and the assumptions inferred by decision trees are validated through model checking. In order to improve the efficiency and effectiveness of the assumption generation process, we propose a novel test case generation technique, namely Important Features Boundary Test (IFBT), that guides the test generation based on the feedback produced by machine learning. We evaluated EPIcuRus by assessing its effectiveness in computing assumptions on a set of study subjects that include 18 requirements of four industrial models. We show that, for each of the 18 requirements, EPIcuRus was able to compute an assumption to ensure the satisfaction of that requirement, and further, ≈78% of these assumptions were computed in one hour.
2020
Gaaloul, Khouloud; Menghi, Claudio; Nejati, Shiva; Briand, Lionel C.; Wolfe, David
File allegato/i alla scheda:
File Dimensione del file Formato  
3368089.3409737.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 580.31 kB
Formato Adobe PDF
580.31 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/236971
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact