The phenomenon of tool wear strongly affects the efficiency of machining and the quality of machined products. The experimental approach to investigate tool wear requires several time consuming tests. Finite Element Methods (FEM) can be utilized to predict tool wear and tool life as function of process parameters and tool geometry. The commercial software for Finite Element Analysis (FEA) are limited by the impossibility to update the geometry of the worn tool. This research utilizes a self-released subroutine in order to modify the tool geometry in DEFORM 3D simulations by considering the volume reduction of the tool. The model was validated with experimental data obtained by drilling tests on Inconel 718 using conventional metal working fluids (MWF). The correct profile of the simulated worn tool was individuated by comparing the prediction of the simulation with the real tool geometry. The FEM simulation allowed to predict how torque changes during the tool life. In a predictive maintenance perspective, the model can be implemented to optimize the tools replacement.

(2021). Finite element simulation of tool wear in machining of nickel-chromiumbased superalloy . Retrieved from https://hdl.handle.net/10446/238512

Finite element simulation of tool wear in machining of nickel-chromiumbased superalloy

Cappellini, Cristian;Attanasio, Aldo
2021-01-01

Abstract

The phenomenon of tool wear strongly affects the efficiency of machining and the quality of machined products. The experimental approach to investigate tool wear requires several time consuming tests. Finite Element Methods (FEM) can be utilized to predict tool wear and tool life as function of process parameters and tool geometry. The commercial software for Finite Element Analysis (FEA) are limited by the impossibility to update the geometry of the worn tool. This research utilizes a self-released subroutine in order to modify the tool geometry in DEFORM 3D simulations by considering the volume reduction of the tool. The model was validated with experimental data obtained by drilling tests on Inconel 718 using conventional metal working fluids (MWF). The correct profile of the simulated worn tool was individuated by comparing the prediction of the simulation with the real tool geometry. The FEM simulation allowed to predict how torque changes during the tool life. In a predictive maintenance perspective, the model can be implemented to optimize the tools replacement.
2021
Abeni, A.; Cappellini, Cristian; Attanasio, Aldo
File allegato/i alla scheda:
File Dimensione del file Formato  
Finite-element-simulation-of-tool-wear-in-machining-of-nickel-chromiumbased-superalloy- (1).pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/238512
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact