This paper concerns the tool wear in hard turning of AISI 52100 hardened steel by means of PCBN tools. The purposes of this work are the development of a tool wear model and its implementation in a FEM-based procedure for predicting crater and flank wear progression during machining operations for studying the influence of tool wear on the process in terms of tool geometry modifications and stress variation on the tool. The developed tool wear model, able to update the geometry of the worn tool as a function of the wear rate, has been implemented in the utilized Deform 2D FEM software. This new analytical model differs from the already proposed methods of existing research, since it concerns both crater and flank wear evaluation. The validation of the model has been achieved by the comparison between experimental and simulated wear parameters. For doing this, an extended experimental campaign has been accomplished. The comparison results have shown good agreement. Once validated, the FEM strategy has been utilized for examining the influence of tool wear on the effective rake angle and the related tool stresses, individuating the excessive positive rake angle value as the final tool breakage mechanism.

(2022). Development and implementation of crater and flank tool wear model for hard turning simulations [journal article - articolo]. In INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY. Retrieved from https://hdl.handle.net/10446/238554

Development and implementation of crater and flank tool wear model for hard turning simulations

Cappellini, Cristian;
2022-01-01

Abstract

This paper concerns the tool wear in hard turning of AISI 52100 hardened steel by means of PCBN tools. The purposes of this work are the development of a tool wear model and its implementation in a FEM-based procedure for predicting crater and flank wear progression during machining operations for studying the influence of tool wear on the process in terms of tool geometry modifications and stress variation on the tool. The developed tool wear model, able to update the geometry of the worn tool as a function of the wear rate, has been implemented in the utilized Deform 2D FEM software. This new analytical model differs from the already proposed methods of existing research, since it concerns both crater and flank wear evaluation. The validation of the model has been achieved by the comparison between experimental and simulated wear parameters. For doing this, an extended experimental campaign has been accomplished. The comparison results have shown good agreement. Once validated, the FEM strategy has been utilized for examining the influence of tool wear on the effective rake angle and the related tool stresses, individuating the excessive positive rake angle value as the final tool breakage mechanism.
articolo
2022
Cappellini, Cristian; Abeni, Andrea
(2022). Development and implementation of crater and flank tool wear model for hard turning simulations [journal article - articolo]. In INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY. Retrieved from https://hdl.handle.net/10446/238554
File allegato/i alla scheda:
File Dimensione del file Formato  
s00170-022-08885-y.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/238554
Citazioni
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact