We consider a homogeneous space X= (X, d, m) of dimension v&\ and a local regular Dirichlet form in L2(X, in). We prove that if a Poincaré inequality holds on every pseudo-ball B(x, R) of X, then an Harnack's inequality can be proved on the same ball with local characteristic constant c0 and c1.

(2001). Harnack's inequality on homogeneous spaces [journal article - articolo]. In ANNALI DI MATEMATICA PURA ED APPLICATA. Retrieved from https://hdl.handle.net/10446/241653

Harnack's inequality on homogeneous spaces

Garattini, Remo
2001-01-01

Abstract

We consider a homogeneous space X= (X, d, m) of dimension v&\ and a local regular Dirichlet form in L2(X, in). We prove that if a Poincaré inequality holds on every pseudo-ball B(x, R) of X, then an Harnack's inequality can be proved on the same ball with local characteristic constant c0 and c1.
articolo
2001
Garattini, Remo
(2001). Harnack's inequality on homogeneous spaces [journal article - articolo]. In ANNALI DI MATEMATICA PURA ED APPLICATA. Retrieved from https://hdl.handle.net/10446/241653
File allegato/i alla scheda:
File Dimensione del file Formato  
BF02505945.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 568.99 kB
Formato Adobe PDF
568.99 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/241653
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact