We consider a homogeneous space X= (X, d, m) of dimension v&\ and a local regular Dirichlet form in L2(X, in). We prove that if a Poincaré inequality holds on every pseudo-ball B(x, R) of X, then an Harnack's inequality can be proved on the same ball with local characteristic constant c0 and c1.
(2001). Harnack's inequality on homogeneous spaces [journal article - articolo]. In ANNALI DI MATEMATICA PURA ED APPLICATA. Retrieved from https://hdl.handle.net/10446/241653
Harnack's inequality on homogeneous spaces
Garattini, Remo
2001-01-01
Abstract
We consider a homogeneous space X= (X, d, m) of dimension v&\ and a local regular Dirichlet form in L2(X, in). We prove that if a Poincaré inequality holds on every pseudo-ball B(x, R) of X, then an Harnack's inequality can be proved on the same ball with local characteristic constant c0 and c1.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
BF02505945.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
568.99 kB
Formato
Adobe PDF
|
568.99 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo