This work presents the features of a new kind of deep n-well monolithic active pixel sensor (DNW-MAPS), called SDR1 (Sparsified Data Readout), which exploits the capabilities of vertical integration (3D) processing in view of the design of a high granularity detector for vertexing applications at the International Linear Collider (ILC). SDR1 inherits and extends the functional capabilities of DNW-MAPS fabricated in planar (2D) CMOS technology and is expected to show better collection efficiency with respect to 2D versions. The aim of the paper is to outline the features of analog and digital architecture of the SDR1 chip, together with circuit simulations data. Also some device simulation results concerning detection efficiency will be discussed.

A 3D deep n-well CMOS MAPS for the ILC vertex detector

GAIONI, Luigi;MANGHISONI, Massimo;RE, Valerio;TRAVERSI, Gianluca
2010-01-01

Abstract

This work presents the features of a new kind of deep n-well monolithic active pixel sensor (DNW-MAPS), called SDR1 (Sparsified Data Readout), which exploits the capabilities of vertical integration (3D) processing in view of the design of a high granularity detector for vertexing applications at the International Linear Collider (ILC). SDR1 inherits and extends the functional capabilities of DNW-MAPS fabricated in planar (2D) CMOS technology and is expected to show better collection efficiency with respect to 2D versions. The aim of the paper is to outline the features of analog and digital architecture of the SDR1 chip, together with circuit simulations data. Also some device simulation results concerning detection efficiency will be discussed.
journal article - articolo
2010
Gaioni, Luigi; Manghisoni, Massimo; Ratti, Lodovico; Re, Valerio; Traversi, Gianluca
File allegato/i alla scheda:
Non ci sono file allegati a questa scheda.
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/24191
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact