We introduce a new approach to shape-preserving estimation of cumulative distribution functions and probability density functions using the wavelet methodology for multivariate dependent data. Our estimators preserve shape constraints such as monotonicity, positivity and integration to one, and allow for low spatial regularity of the underlying functions. We discuss conditional quantile estimation for financial time series data as an application. Our methodology can be implemented with B-splines. We show by means of Monte Carlo simulations that it performs well in finite samples and for a data-driven choice of the resolution level.
(2007). Multivariate Wavelet-based shape preserving estimation for dependent observations [journal article - articolo]. In BERNOULLI. Retrieved from https://hdl.handle.net/10446/246790
Multivariate Wavelet-based shape preserving estimation for dependent observations
Cosma, Antonio;
2007-01-01
Abstract
We introduce a new approach to shape-preserving estimation of cumulative distribution functions and probability density functions using the wavelet methodology for multivariate dependent data. Our estimators preserve shape constraints such as monotonicity, positivity and integration to one, and allow for low spatial regularity of the underlying functions. We discuss conditional quantile estimation for financial time series data as an application. Our methodology can be implemented with B-splines. We show by means of Monte Carlo simulations that it performs well in finite samples and for a data-driven choice of the resolution level.File | Dimensione del file | Formato | |
---|---|---|---|
07-BEJ5066.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
370.79 kB
Formato
Adobe PDF
|
370.79 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo