In this short paper we summarize the ongoing work pertaining the use and combination of mobile phone data to characterize the spatio-temporal dynamic of the presence and the movements of people in the context of smart cities. We develop ad-hoc statistical approaches with the aim of developing small area indicators and forecasting traffic flows. The application of these strategies is related to the evaluation of flood risk in urban areas

(2023). Spatio-temporal statistical analyses for risk evaluation using big data from mobile phone network . Retrieved from https://hdl.handle.net/10446/247030

Spatio-temporal statistical analyses for risk evaluation using big data from mobile phone network

Metulini, Rodolfo;
2023-01-01

Abstract

In this short paper we summarize the ongoing work pertaining the use and combination of mobile phone data to characterize the spatio-temporal dynamic of the presence and the movements of people in the context of smart cities. We develop ad-hoc statistical approaches with the aim of developing small area indicators and forecasting traffic flows. The application of these strategies is related to the evaluation of flood risk in urban areas
2023
Perazzini, Selene; Metulini, Rodolfo; Carpita, Maurizio
File allegato/i alla scheda:
File Dimensione del file Formato  
SDS2023_shortversion_perazzini_et_al.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/247030
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact