The present paper investigates the effects of the application of trenched holes in the front part of a contoured film cooled endwall. Two trench configurations were tested, changing the trench depth. Tests have been carried out at low speed (M2is=0.2) and low inlet turbulence intensity level, with coolant mass flow rate ratio varied within the 0.5–2.5% range. Pressure probe traverses were performed downstream of the vane trailing edge to show the secondary flow field modifications and to evaluate trench additional losses. Endwall distributions of film cooling effectiveness have been obtained by the thermochromic liquid crystal (TLC) technique. For each injection condition, energy loss coefficient and film cooling effectiveness distributions were analyzed and compared with the ones obtained from rows of cylindrical holes. Laterally and area averaged effectiveness as well as pitch and mass averaged kinetic energy loss coefficients were computed to enlighten any change induced by the introduction of trenched holes. A uniform and high thermal coverage was obtained in the region just downstream of the trench, but it quickly decayed because of enforced mixing of coolant with main flow. Compared with the cylindrical hole configuration, trenches are able to provide a higher global cooling effectiveness, but a larger amount of coolant injection is required. The introduction of both trenches is responsible for a secondary thermodynamic loss increase of about 0.7% at low coolant injection rates. Increasing the blowing rates, the additional loss vanishes.
Effects of Trenched Holes on Film Cooling of a Contoured Endwall Nozzle Vane
BARIGOZZI, Giovanna;FRANCHINI, Giuseppe;PERDICHIZZI, Antonio Giovanni;RAVELLI, Silvia
2012-01-01
Abstract
The present paper investigates the effects of the application of trenched holes in the front part of a contoured film cooled endwall. Two trench configurations were tested, changing the trench depth. Tests have been carried out at low speed (M2is=0.2) and low inlet turbulence intensity level, with coolant mass flow rate ratio varied within the 0.5–2.5% range. Pressure probe traverses were performed downstream of the vane trailing edge to show the secondary flow field modifications and to evaluate trench additional losses. Endwall distributions of film cooling effectiveness have been obtained by the thermochromic liquid crystal (TLC) technique. For each injection condition, energy loss coefficient and film cooling effectiveness distributions were analyzed and compared with the ones obtained from rows of cylindrical holes. Laterally and area averaged effectiveness as well as pitch and mass averaged kinetic energy loss coefficients were computed to enlighten any change induced by the introduction of trenched holes. A uniform and high thermal coverage was obtained in the region just downstream of the trench, but it quickly decayed because of enforced mixing of coolant with main flow. Compared with the cylindrical hole configuration, trenches are able to provide a higher global cooling effectiveness, but a larger amount of coolant injection is required. The introduction of both trenches is responsible for a secondary thermodynamic loss increase of about 0.7% at low coolant injection rates. Increasing the blowing rates, the additional loss vanishes.File | Dimensione del file | Formato | |
---|---|---|---|
JTM041009.pdf
Solo gestori di archivio
Descrizione: publisher's version - versione dell'editore
Dimensione del file
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo