Background: Pulmonary artery wedge pressure (PAWP) during exercise, as a surrogate for left ventricular (LV) end-diastolic pressure (EDP), is used to diagnose heart failure with preserved ejection fraction (HFpEF). However, LVEDP is the gold standard to assess LV filling, end-diastolic PAWP (PAWPED) is supposed to coincide with LVEDP and mean PAWP throughout the cardiac cycle (PAWPM) better reflects the haemodynamic load imposed on the pulmonary circulation. The objective of the present study was to determine precision and accuracy of PAWP estimates for LVEDP during exercise, as well as the rate of agreement between these measures. Methods: 46 individuals underwent simultaneous right and left heart catheterisation, at rest and during exercise, to confirm/exclude HFpEF. We evaluated: linear regression between LVEDP and PAWP, Bland-Altman graphs, and the rate of concordance of dichotomised LVEDP and PAWP ≥ or < diagnostic thresholds for HFpEF. Results: At peak exercise, PAWPM and LVEDP, as well as PAWPED and LVEDP, were fairly correlated (R2>0.69, p<0.01), with minimal bias (+2 and 0 mmHg respectively) but large limits of agreement (±11 mmHg). 89% of individuals had concordant PAWP and LVEDP ≥ or <25 mmHg (Cohen's κ=0.64). Individuals with either LVEDP or PAWPM ≥25 mmHg showed a PAWPM increase relative to cardiac output (CO) changes (PAWPM/CO slope) >2 mmHg·L-1·min-1. Conclusions: During exercise, PAWP is accurate but not precise for the estimation of LVEDP. Despite a good rate of concordance, these two measures might occasionally disagree.
(2023). Pulmonary artery wedge pressure and left ventricular end-diastolic pressure during exercise in patients with dyspnoea [journal article - articolo]. In ERJ OPEN RESEARCH. Retrieved from https://hdl.handle.net/10446/253746
Pulmonary artery wedge pressure and left ventricular end-diastolic pressure during exercise in patients with dyspnoea
Baratto, Claudia;Caravita, Sergio
2023-01-01
Abstract
Background: Pulmonary artery wedge pressure (PAWP) during exercise, as a surrogate for left ventricular (LV) end-diastolic pressure (EDP), is used to diagnose heart failure with preserved ejection fraction (HFpEF). However, LVEDP is the gold standard to assess LV filling, end-diastolic PAWP (PAWPED) is supposed to coincide with LVEDP and mean PAWP throughout the cardiac cycle (PAWPM) better reflects the haemodynamic load imposed on the pulmonary circulation. The objective of the present study was to determine precision and accuracy of PAWP estimates for LVEDP during exercise, as well as the rate of agreement between these measures. Methods: 46 individuals underwent simultaneous right and left heart catheterisation, at rest and during exercise, to confirm/exclude HFpEF. We evaluated: linear regression between LVEDP and PAWP, Bland-Altman graphs, and the rate of concordance of dichotomised LVEDP and PAWP ≥ or < diagnostic thresholds for HFpEF. Results: At peak exercise, PAWPM and LVEDP, as well as PAWPED and LVEDP, were fairly correlated (R2>0.69, p<0.01), with minimal bias (+2 and 0 mmHg respectively) but large limits of agreement (±11 mmHg). 89% of individuals had concordant PAWP and LVEDP ≥ or <25 mmHg (Cohen's κ=0.64). Individuals with either LVEDP or PAWPM ≥25 mmHg showed a PAWPM increase relative to cardiac output (CO) changes (PAWPM/CO slope) >2 mmHg·L-1·min-1. Conclusions: During exercise, PAWP is accurate but not precise for the estimation of LVEDP. Despite a good rate of concordance, these two measures might occasionally disagree.File | Dimensione del file | Formato | |
---|---|---|---|
00750-2022.full.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
784.89 kB
Formato
Adobe PDF
|
784.89 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo