Ring rolling is a hot forming process used in the production of railway tyres, anti friction bearing races and different ring shaped work pieces for automotive energy production and aerospace applications. The advantages of ring rolling process include short production time, uniform quality, closed tolerances, good material quality and considerable saving in material cost. Despite the benefits some problems still exist according to a correct selection of the process parameters. Due to the nature of the process different rolling mills (driving, idle and axial rolls) are involved and the correct selection of the process parameters is not so feasible. Moreover an experimental approach to solve this problem risks to be more expensive. Actually FE codes are available to simulate the non linear problem that characterizes a ring rolling process. In this work a FE model, based on Deform 3D software, was tested versus experimental results acquired from an industrial plant. The accuracy of the FE model was analyzed through a dual comparison: by geometrical and by physical aspects. A good agreement was found between experimental and numerical results for both comparisons and, as a consequence, this code could be used in order to investigate and optimize the process parameters that characterize the ring rolling process in a virtual not expensive environment. The validated model will allow the studies of more environment-friend process configurations.

Validation of hot ring rolling industrial process 3D simulation

GIARDINI, Claudio;
2013-01-01

Abstract

Ring rolling is a hot forming process used in the production of railway tyres, anti friction bearing races and different ring shaped work pieces for automotive energy production and aerospace applications. The advantages of ring rolling process include short production time, uniform quality, closed tolerances, good material quality and considerable saving in material cost. Despite the benefits some problems still exist according to a correct selection of the process parameters. Due to the nature of the process different rolling mills (driving, idle and axial rolls) are involved and the correct selection of the process parameters is not so feasible. Moreover an experimental approach to solve this problem risks to be more expensive. Actually FE codes are available to simulate the non linear problem that characterizes a ring rolling process. In this work a FE model, based on Deform 3D software, was tested versus experimental results acquired from an industrial plant. The accuracy of the FE model was analyzed through a dual comparison: by geometrical and by physical aspects. A good agreement was found between experimental and numerical results for both comparisons and, as a consequence, this code could be used in order to investigate and optimize the process parameters that characterize the ring rolling process in a virtual not expensive environment. The validated model will allow the studies of more environment-friend process configurations.
journal article - articolo
2013
Giorleo, Luca; Giardini, Claudio; Ceretti, Elisabetta
File allegato/i alla scheda:
Non ci sono file allegati a questa scheda.
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/25500
Citazioni
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 15
social impact