The last decade has seen a significant increase in usage of cloud services. Albeit the advantages, there are also several security and privacy challenges. The experience gained by the community attests that it is not enough to just change data visibility to ensure an adequate level of protection; it is rather necessary to pay attention to the whole data lifecycle: collection, sanitization, storage, processing and release. This thesis analyzes each stage, proposing Open Source solutions that push forward the state of the art. The first part of the thesis focuses on data collection in the mobile scenario. This environment is relevant as smartphones are devices connected to the network, and with the ability to log confidential data. The goal is to modify the Operating System (Android) to enable internal application compartmentalization and protect sensitive data. After the data are collected, a user may apply to it sanitization before uploading to the cloud. Sanitization irreversibly alteres data so that a subject (referenced within it) can not be identified, given a certain security parameter, while the data remain practically useful. The second part of the thesis presents an approach to sanitize large collections of data. The third part of the thesis investigates the storage and processing stages. Typically, the cloud provider is considered honest-but-curious, which assumes that it complies with the requests issued by the user, but may abuse the access to the information provided. The goal is to support the execution of queries over outsourced data with a guarantee that the cloud provider does not have access to the data content. The last part of the thesis addresses the data release stage. As we move to a decentralized environment in which the parties are mutually distrusting, the honesty assumption is refuted. The parties are instead modeled as rational. We propose a solution to schedule the release of data without the need for a Trusted Party.
Nell'ultima decade è particolarmente aumentato l'utilizzo di servizi cloud. Sebbene ciò comporti dei vantaggi, ci sono anche molte sfide legate alla sicurezza e alla privacy. L'esperienza testimonia che non è sufficiente cambiare la visibilità del dato per ottenere un livello di protezione adeguato. Piuttosto, è necessario organizzare meticolosamente l'intero ciclo di vita del dato: raccolta, sanitizzazione, memorizzazione, elaborazione e rilascio. Questo libroanalizza ciascuno stadio proponendo soluzioni Open Source innovative. La prima parte studia la raccolta dati in ambito mobile. Si tratta di uno scenario importante dato che gli smartphone sono connessi alla rete e possono rilevare informazioni sensibili. L'obiettivo è modificare il sistema operativo (Android) per consentire la compartimentalizzazione di applicazioni e proteggere dati sensibili. In seguito alla raccolta, un utente può sanitizzare i dati prima di caricarli in cloud. La sanitizzazione altera irreversibilmente i dati, in modo tale che ciascun soggetto referenziato da essi non possa essere identificato, entro certi parametri di sicurezza, evitando che i dati siano resi inutilizzabili. La seconda parte della tesi presenta un approccio per sanitizzare grandi collezioni dati. La terza parte del lavoro investiga gli stadi di memorizzazione ed elaborazione. Solitamente, il cloud provider viene considerato honest-but-curious, si assume cioè che esso eseguirà sempre le richieste dell'utente, ma potrebbe abusare dell'accesso alle informazioni. L'obiettivo è consentire l'esecuzione di interrogazioni su dati cifrati, senza che il gestore ne abbia accesso in chiaro. L'ultima parte del libro si occupa della fase di rilascio. L'assunzione di onestà è confutata, in quanto in un ambiente decentralizzato le parti non si fidano reciprocamente. Le parti sono invece modellate come razionali e sotto questa assunzione, viene proposta una tecnica per schedulare il rilascio dati senza una parte fidata.
(2023). Technologies for data protection . Retrieved from https://hdl.handle.net/10446/258229 Retrieved from http://dx.doi.org/10.13122/978-88-97413-70-7
Technologies for data protection
Facchinetti, Dario
2023-01-01
Abstract
The last decade has seen a significant increase in usage of cloud services. Albeit the advantages, there are also several security and privacy challenges. The experience gained by the community attests that it is not enough to just change data visibility to ensure an adequate level of protection; it is rather necessary to pay attention to the whole data lifecycle: collection, sanitization, storage, processing and release. This thesis analyzes each stage, proposing Open Source solutions that push forward the state of the art. The first part of the thesis focuses on data collection in the mobile scenario. This environment is relevant as smartphones are devices connected to the network, and with the ability to log confidential data. The goal is to modify the Operating System (Android) to enable internal application compartmentalization and protect sensitive data. After the data are collected, a user may apply to it sanitization before uploading to the cloud. Sanitization irreversibly alteres data so that a subject (referenced within it) can not be identified, given a certain security parameter, while the data remain practically useful. The second part of the thesis presents an approach to sanitize large collections of data. The third part of the thesis investigates the storage and processing stages. Typically, the cloud provider is considered honest-but-curious, which assumes that it complies with the requests issued by the user, but may abuse the access to the information provided. The goal is to support the execution of queries over outsourced data with a guarantee that the cloud provider does not have access to the data content. The last part of the thesis addresses the data release stage. As we move to a decentralized environment in which the parties are mutually distrusting, the honesty assumption is refuted. The parties are instead modeled as rational. We propose a solution to schedule the release of data without the need for a Trusted Party.File | Dimensione del file | Formato | |
---|---|---|---|
CollanaSAFD_Volume49_2022.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
5.01 MB
Formato
Adobe PDF
|
5.01 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo