A fully discrete entropy conserving and entropy stable discretization of the Euler equations is here presented. The discretization in space is performed with a discontinuous Galerkin (dG) method with entropy working variables and several entropy conserving and entropy stable numerical fluxes. The discretization in time is performed with an entropy conserving generalized Crank-Nicolson scheme. The numerical results, obtained for the isentropic convecting vortex and the double shear layer, will show the order of accuracy and the conservation properties of both the time and the spatial discretization schemes.

(2023). Fully Discrete Entropy Conserving/Stable Discontinuous Galerkin Discretization of the Euler Equations in Entropy Variables . Retrieved from https://hdl.handle.net/10446/259130

Fully Discrete Entropy Conserving/Stable Discontinuous Galerkin Discretization of the Euler Equations in Entropy Variables

Crivellini, Andrea;Colombo, Alessandro
2023-01-01

Abstract

A fully discrete entropy conserving and entropy stable discretization of the Euler equations is here presented. The discretization in space is performed with a discontinuous Galerkin (dG) method with entropy working variables and several entropy conserving and entropy stable numerical fluxes. The discretization in time is performed with an entropy conserving generalized Crank-Nicolson scheme. The numerical results, obtained for the isentropic convecting vortex and the double shear layer, will show the order of accuracy and the conservation properties of both the time and the spatial discretization schemes.
2023
Nigro, Alessandra; Crivellini, Andrea; Colombo, Alessandro
File allegato/i alla scheda:
File Dimensione del file Formato  
ECS_DG.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 409.87 kB
Formato Adobe PDF
409.87 kB Adobe PDF   Visualizza/Apri
Spectral cover-index.pdf

Solo gestori di archivio

Versione: cover/index - copertina/indice
Licenza: Licenza default Aisberg
Dimensione del file 176.37 kB
Formato Adobe PDF
176.37 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/259130
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact