This work proposes a finite-horizon optimal control strategy to solve the tracking problem while providing avoidance features to the closed-loop system. Inspired by the set-point tracking model predictive control (MPC) framework, the central idea of including artificial variables into the optimal control problem is considered. This approach allows us to add avoidance features into the set-point tracking MPC strategy without losing the properties of an enlarged domain of attraction and feasibility insurances in the face of any changing reference. Besides, the artificial variables are considered together with an avoidance cost functional to establish the basis of the strategy, maintaining the recursive feasibility property in the presence of a previously unknown number of regions to be avoided. It is shown that the closed-loop system is recursively feasible and input-to-state-stable under the mild assumption that the avoidance cost is uniformly bounded over time. Finally, two numerical examples illustrate the controller behavior.
(2024). Set-point tracking MPC with avoidance features [journal article - articolo]. In AUTOMATICA. Retrieved from https://hdl.handle.net/10446/259802
Set-point tracking MPC with avoidance features
Ferramosca, Antonio;
2024-01-01
Abstract
This work proposes a finite-horizon optimal control strategy to solve the tracking problem while providing avoidance features to the closed-loop system. Inspired by the set-point tracking model predictive control (MPC) framework, the central idea of including artificial variables into the optimal control problem is considered. This approach allows us to add avoidance features into the set-point tracking MPC strategy without losing the properties of an enlarged domain of attraction and feasibility insurances in the face of any changing reference. Besides, the artificial variables are considered together with an avoidance cost functional to establish the basis of the strategy, maintaining the recursive feasibility property in the presence of a previously unknown number of regions to be avoided. It is shown that the closed-loop system is recursively feasible and input-to-state-stable under the mild assumption that the avoidance cost is uniformly bounded over time. Finally, two numerical examples illustrate the controller behavior.File | Dimensione del file | Formato | |
---|---|---|---|
1-s2.0-S0005109823005575-main.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo