The coordination of a leader with group members is very important for an effective leadership given that this figure is the person who actually manages the team members to achieve a desired goal. Investigating the leadership and especially the leadership style is a prominent research topic in social and organizational psychology. However, this is a new problem in social signal processing that can actually make valuable contributions by analyzing multimodal data in a more effective and efficient way. In this work, we identify the leadership style of an emergent leader (i.e., the leader who naturally arises from a group, not designated) as autocratic or democratic. The proposed method is applied to a dataset in-the-wild; in other words, there is no role-playing, which is novel for this problem. Multiple kernel learning (MKL) using multimodal nonverbal features is utilized to predict leadership styles that proved to achieve better predictions as compared to traditional learning methods. Thanks to MKL and a simple heuristic proposed, the best performing features are also identified, showing that better predictions can be reached only by using those features. Additionally, correlation analysis between the extracted nonverbal features and the results of social psychology questionnaire is also performed. This shows that significantly high correlations exist for speaking activity based and prosodic nonverbal features.

(2018). Prediction of the leadership style of an emergent leader using audio and visual nonverbal features [journal article - articolo]. In IEEE TRANSACTIONS ON MULTIMEDIA. Retrieved from https://hdl.handle.net/10446/260540

Prediction of the leadership style of an emergent leader using audio and visual nonverbal features

Beyan, Cigdem;
2018-01-01

Abstract

The coordination of a leader with group members is very important for an effective leadership given that this figure is the person who actually manages the team members to achieve a desired goal. Investigating the leadership and especially the leadership style is a prominent research topic in social and organizational psychology. However, this is a new problem in social signal processing that can actually make valuable contributions by analyzing multimodal data in a more effective and efficient way. In this work, we identify the leadership style of an emergent leader (i.e., the leader who naturally arises from a group, not designated) as autocratic or democratic. The proposed method is applied to a dataset in-the-wild; in other words, there is no role-playing, which is novel for this problem. Multiple kernel learning (MKL) using multimodal nonverbal features is utilized to predict leadership styles that proved to achieve better predictions as compared to traditional learning methods. Thanks to MKL and a simple heuristic proposed, the best performing features are also identified, showing that better predictions can be reached only by using those features. Additionally, correlation analysis between the extracted nonverbal features and the results of social psychology questionnaire is also performed. This shows that significantly high correlations exist for speaking activity based and prosodic nonverbal features.
articolo
2018
Beyan, Cigdem; Capozzi, Francesca; Becchio, Cristina; Murino, Vittorio
(2018). Prediction of the leadership style of an emergent leader using audio and visual nonverbal features [journal article - articolo]. In IEEE TRANSACTIONS ON MULTIMEDIA. Retrieved from https://hdl.handle.net/10446/260540
File allegato/i alla scheda:
File Dimensione del file Formato  
IJ09_Prediction of the Leadership Style of an Emergent Leader Using Audio and Visual Nonverbal Features.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 392.71 kB
Formato Adobe PDF
392.71 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/260540
Citazioni
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 38
social impact