Over the past decade, inorganic fillers and sol-gel-based flame-retardant technologies for textile treatments have gained increasing research interest as useful alternatives to hazardous chemicals previously employed in textile coating and finishing. This review presents the current state of the art of inorganic flame-retardant technology for cotton fabrics to scientists and researchers. Combustion mechanism and flammability, as well as the thermal behavior of neat cotton samples, are first introduced. The main section is focused on assessing the effect of inorganic and sol-gel-based systems on the final flame-retardant properties of cotton fabrics, emphasizing their fire safety characteristics. When compared to organic flame-retardant solutions, inorganic functional fillers have been shown to be more environmentally friendly and pollution-free since they do not emit compounds that are hazardous to ecosystems and humans when burned. Finally, some perspectives and recent advanced research addressing the potential synergism derived from the use of inorganic flame retardants with other environmentally suitable molecules toward a sustainable flame-retardant technological approach are reviewed.

(2023). How to Address Flame-Retardant Technology on Cotton Fabrics by Using Functional Inorganic Sol–Gel Precursors and Nanofillers: Flammability Insights, Research Advances, and Sustainability Challenges [journal article - articolo]. In INORGANICS. Retrieved from https://hdl.handle.net/10446/261135

How to Address Flame-Retardant Technology on Cotton Fabrics by Using Functional Inorganic Sol–Gel Precursors and Nanofillers: Flammability Insights, Research Advances, and Sustainability Challenges

Trovato, Valentina;Ben Debabis, Rim;Rosace, Giuseppe;
2023-01-01

Abstract

Over the past decade, inorganic fillers and sol-gel-based flame-retardant technologies for textile treatments have gained increasing research interest as useful alternatives to hazardous chemicals previously employed in textile coating and finishing. This review presents the current state of the art of inorganic flame-retardant technology for cotton fabrics to scientists and researchers. Combustion mechanism and flammability, as well as the thermal behavior of neat cotton samples, are first introduced. The main section is focused on assessing the effect of inorganic and sol-gel-based systems on the final flame-retardant properties of cotton fabrics, emphasizing their fire safety characteristics. When compared to organic flame-retardant solutions, inorganic functional fillers have been shown to be more environmentally friendly and pollution-free since they do not emit compounds that are hazardous to ecosystems and humans when burned. Finally, some perspectives and recent advanced research addressing the potential synergism derived from the use of inorganic flame retardants with other environmentally suitable molecules toward a sustainable flame-retardant technological approach are reviewed.
articolo
2023
Trovato, Valentina; Sfameni, Silvia; BEN DEBABIS, Rim; Rando, Giulia; Rosace, Giuseppe; Malucelli, Giulio; Plutino, Maria Rosaria
(2023). How to Address Flame-Retardant Technology on Cotton Fabrics by Using Functional Inorganic Sol–Gel Precursors and Nanofillers: Flammability Insights, Research Advances, and Sustainability Challenges [journal article - articolo]. In INORGANICS. Retrieved from https://hdl.handle.net/10446/261135
File allegato/i alla scheda:
File Dimensione del file Formato  
2023 How to Address Flame-Retardant Technology on Cotton Fabrics by Using Functional Inorganic Sol–Gel Precursors and Nanofillers: Flammability Insights, Research Advances, and Sustainability Challenges.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/261135
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact