We consider regression models for multivariate spatio temporal data. We view the data as a time series of spatial processes and work in the setting of dynamic models. In order to add exibility we consider regression models with spatio temporal varying coefficients. Spatial dependence among the di fferent measurements is attained considering the linear model of coregionalization. Since spatio-temporal data are tipically of large dimension we propose to perform estimation both through maximum likelihood by means of the EM algorithm and a modi ed version of it exploiting the covariance tapering likelihood function.

(2011). Tapering spatio temporal models [conference presentation - intervento a convegno]. Retrieved from http://hdl.handle.net/10446/26277

Tapering spatio temporal models

FASSO', Alessandro;FINAZZI, Francesco;BEVILACQUA, Moreno
2011-01-01

Abstract

We consider regression models for multivariate spatio temporal data. We view the data as a time series of spatial processes and work in the setting of dynamic models. In order to add exibility we consider regression models with spatio temporal varying coefficients. Spatial dependence among the di fferent measurements is attained considering the linear model of coregionalization. Since spatio-temporal data are tipically of large dimension we propose to perform estimation both through maximum likelihood by means of the EM algorithm and a modi ed version of it exploiting the covariance tapering likelihood function.
2011
Fasso', Alessandro; Finazzi, Francesco; Bevilacqua, Moreno
File allegato/i alla scheda:
File Dimensione del file Formato  
110.pdf

accesso aperto

Descrizione: publisher's version - versione dell'editore
Dimensione del file 166.25 kB
Formato Adobe PDF
166.25 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/26277
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact