When using skin markers and stereophotogrammetry for movement analysis, bone pose estimation may be performed using multi-body optimization with the intent of reducing the effect of soft tissue artefacts. When the joint of interest is the knee, improvement of this approach requires defining subject-specific relevant kinematic constraints. The aim of this work was to provide these constraints in the form of plausible values for the distances between origin and insertion of the main ligaments (ligament lengths), during loaded healthy knee flexion, taking into account the indeterminacies associated with landmark identification during anatomical calibration. Ligament attachment sites were identified through virtual palpation on digital bone templates. Attachments sites were estimated for six knee specimens by matching the femur and tibia templates to low-dose stereoradiography images. Movement data were obtained using stereophotogrammetry and pin markers. Relevant ligament lengths for the anterior and posterior cruciate, lateral collateral, and deep and superficial bundles of the medial collateral ligaments (ACL, PCL, LCL, MCLdeep, MCLsup) were calculated. The effect of landmark identification variability was evaluated performing a Monte Carlo simulation on the coordinates of the origin-insertion centroids. The ACL and LCL lengths were found to decrease, and the MCLdeep length to increase significantly during flexion, while variations in PCL and MCLsup length was concealed by the experimental indeterminacy. An analytical model is given that provides subject-specific plausible ligament length variations as functions of the knee flexion angle and that can be incorporated in a multi-body optimization procedure.

(2011). Tibio-femoral joint constraints for bone pose estimation during movement using multi-body optimization [journal article - articolo]. In GAIT & POSTURE. Retrieved from https://hdl.handle.net/10446/263093

Tibio-femoral joint constraints for bone pose estimation during movement using multi-body optimization

Bergamini, Elena;
2011-01-01

Abstract

When using skin markers and stereophotogrammetry for movement analysis, bone pose estimation may be performed using multi-body optimization with the intent of reducing the effect of soft tissue artefacts. When the joint of interest is the knee, improvement of this approach requires defining subject-specific relevant kinematic constraints. The aim of this work was to provide these constraints in the form of plausible values for the distances between origin and insertion of the main ligaments (ligament lengths), during loaded healthy knee flexion, taking into account the indeterminacies associated with landmark identification during anatomical calibration. Ligament attachment sites were identified through virtual palpation on digital bone templates. Attachments sites were estimated for six knee specimens by matching the femur and tibia templates to low-dose stereoradiography images. Movement data were obtained using stereophotogrammetry and pin markers. Relevant ligament lengths for the anterior and posterior cruciate, lateral collateral, and deep and superficial bundles of the medial collateral ligaments (ACL, PCL, LCL, MCLdeep, MCLsup) were calculated. The effect of landmark identification variability was evaluated performing a Monte Carlo simulation on the coordinates of the origin-insertion centroids. The ACL and LCL lengths were found to decrease, and the MCLdeep length to increase significantly during flexion, while variations in PCL and MCLsup length was concealed by the experimental indeterminacy. An analytical model is given that provides subject-specific plausible ligament length variations as functions of the knee flexion angle and that can be incorporated in a multi-body optimization procedure.
articolo
2011
Bergamini, Elena; Pillet, Helene; Hausselle, Jerome; Thoreux, Patricia; Guerard, Sandra; Camomilla, Valentina; Cappozzo, Aurelio; Skalli, Wafa
(2011). Tibio-femoral joint constraints for bone pose estimation during movement using multi-body optimization [journal article - articolo]. In GAIT & POSTURE. Retrieved from https://hdl.handle.net/10446/263093
File allegato/i alla scheda:
File Dimensione del file Formato  
2011_Bergamini G&P_Knee joint constraints.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 449.17 kB
Formato Adobe PDF
449.17 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/263093
Citazioni
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact