To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 1034 cm−2 s−1 in the ultimate performance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionising energy loss of up to 3.5 1016 cm−2. This paper focuses on planar pixel sensor design and qualification up to a fluence of = 1.4 1016 cm−2. For the development of appropriate planar pixel sensors an R&D program was initiated, which includes sensors on 150 mm (6”) wafers with an active thickness of 150 µm with pixel sizes of 100 25 µm2 and 50 50 µm2 manufactured by Hamamatsu Photonics K.K. (HPK). Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was an extensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly with ROC4Sens readout chips. It demonstrates that multiple designs fulfil the requirements in terms of breakdown voltage, leakage current and efficiency. The single point resolution for 50 50 µm2 pixels is measured as 4.0 µm for non-irradiated samples, and 6.3 µm after irradiation to = 7.2 1015 cm−2.

(2023). Evaluation of HPK n+-p planar pixel sensors for the CMS Phase-2 upgrade [journal article - articolo]. In NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. Retrieved from https://hdl.handle.net/10446/263409

Evaluation of HPK n+-p planar pixel sensors for the CMS Phase-2 upgrade

Nodari, B.;Gaioni, Luigi;Manghisoni, Massimo;Re, Valerio;Riceputi, Elisa;Traversi, Gianluca;
2023-01-01

Abstract

To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 1034 cm−2 s−1 in the ultimate performance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionising energy loss of up to 3.5 1016 cm−2. This paper focuses on planar pixel sensor design and qualification up to a fluence of = 1.4 1016 cm−2. For the development of appropriate planar pixel sensors an R&D program was initiated, which includes sensors on 150 mm (6”) wafers with an active thickness of 150 µm with pixel sizes of 100 25 µm2 and 50 50 µm2 manufactured by Hamamatsu Photonics K.K. (HPK). Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was an extensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly with ROC4Sens readout chips. It demonstrates that multiple designs fulfil the requirements in terms of breakdown voltage, leakage current and efficiency. The single point resolution for 50 50 µm2 pixels is measured as 4.0 µm for non-irradiated samples, and 6.3 µm after irradiation to = 7.2 1015 cm−2.
articolo
2023
Bergauer T., Adam W.; Damanakis, K.; Dragicevic, M.; Frühwirth, R.; Steininger, H.; Beaumont, W.; Darwish, M. R.; Janssen, T.; Kello, T.; Sfar, H. R.;...espandi
(2023). Evaluation of HPK n+-p planar pixel sensors for the CMS Phase-2 upgrade [journal article - articolo]. In NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. Retrieved from https://hdl.handle.net/10446/263409
File allegato/i alla scheda:
File Dimensione del file Formato  
Evalutation_of_HPK_planar_pixel_sensors.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/263409
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact