Bearing faults account for over 40% of induction motor faults, and for this reason, for several decades, much attention has been paid to their condition monitoring, through vibration measurements and, more recently, through electromagnetic signal analysis. Furthermore, in the last few years, research has been focused on evaluating deep learning algorithms for the automatic diagnosis of these faults. Therefore, the purpose of this study is to propose a novel procedure to automatically diagnose different types of bearing faults and load anomalies by means of the stator current and the external stray flux measured on the induction motor in which the bearings are in-stalled. All the data were collected by performing experimental tests in the laboratory. Then, these data were processed to obtain images (scalograms and spectrograms), which were elaborated by a pre‐trained Deep Convolutional Neural Network, modified through the transfer learning technique. The results demonstrated the ability of the electromagnetic signals, and in particular of the stray flux, to detect bearing faults and mechanical anomalies, in agreement with the recent literature. Moreover, the Convolutional Neural Network has been proven to be able to automatically discrim-inate bearing defects and with respect to the healthy condition.
(2021). Convolutional neural networks for automated rolling bearing diagnostics in induction motors based on electromagnetic signals [journal article - articolo]. In APPLIED SCIENCES. Retrieved from https://hdl.handle.net/10446/263810
Convolutional neural networks for automated rolling bearing diagnostics in induction motors based on electromagnetic signals
Minervini, Marcello;
2021-01-01
Abstract
Bearing faults account for over 40% of induction motor faults, and for this reason, for several decades, much attention has been paid to their condition monitoring, through vibration measurements and, more recently, through electromagnetic signal analysis. Furthermore, in the last few years, research has been focused on evaluating deep learning algorithms for the automatic diagnosis of these faults. Therefore, the purpose of this study is to propose a novel procedure to automatically diagnose different types of bearing faults and load anomalies by means of the stator current and the external stray flux measured on the induction motor in which the bearings are in-stalled. All the data were collected by performing experimental tests in the laboratory. Then, these data were processed to obtain images (scalograms and spectrograms), which were elaborated by a pre‐trained Deep Convolutional Neural Network, modified through the transfer learning technique. The results demonstrated the ability of the electromagnetic signals, and in particular of the stray flux, to detect bearing faults and mechanical anomalies, in agreement with the recent literature. Moreover, the Convolutional Neural Network has been proven to be able to automatically discrim-inate bearing defects and with respect to the healthy condition.File | Dimensione del file | Formato | |
---|---|---|---|
applsci-11-07878-v4.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
9.54 MB
Formato
Adobe PDF
|
9.54 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo