Being able to localize smart devices in Low Power Wide Area Networks (LPWANs) is of primary importance in many Internet of Things applications, including Smart Cities. When GPS positioning is not available, a common strategy is to employ fingerprinting localization, which leverages Received Signal Strength (RSS) radio maps constructed offline during a calibration phase. Often, radio maps can then be interpolated to increase the spatial resolution thus improving localization accuracy. We consider different LPWAN technologies coexisting in the same area, and we explore the possibility of augmenting the localization performance by transferring assistance data for RSS map calibration from one technology to the other. We leverage RSS samples from two real-life LPWANs, namely Wireless M-Bus and LoRaWAN, and we propose several methods for localizing devices through knowledge transfer, comparing them to classical techniques based on simple interpolation within the same technology. Results show that transfer-based approaches are able to improve the localization accuracy up to 12% compared to simple interpolation based on single technology and 16% compared to the case where no interpolation strategy is applied.

(2020). Machine learning based localization of LoRaWAN devices via inter-technology knowledge transfer . Retrieved from https://hdl.handle.net/10446/263895

Machine learning based localization of LoRaWAN devices via inter-technology knowledge transfer

Pimpinella, Andrea;
2020-01-01

Abstract

Being able to localize smart devices in Low Power Wide Area Networks (LPWANs) is of primary importance in many Internet of Things applications, including Smart Cities. When GPS positioning is not available, a common strategy is to employ fingerprinting localization, which leverages Received Signal Strength (RSS) radio maps constructed offline during a calibration phase. Often, radio maps can then be interpolated to increase the spatial resolution thus improving localization accuracy. We consider different LPWAN technologies coexisting in the same area, and we explore the possibility of augmenting the localization performance by transferring assistance data for RSS map calibration from one technology to the other. We leverage RSS samples from two real-life LPWANs, namely Wireless M-Bus and LoRaWAN, and we propose several methods for localizing devices through knowledge transfer, comparing them to classical techniques based on simple interpolation within the same technology. Results show that transfer-based approaches are able to improve the localization accuracy up to 12% compared to simple interpolation based on single technology and 16% compared to the case where no interpolation strategy is applied.
2020
Pimpinella, Andrea; Redondi, Alessandro E. C.; Nicoli, Monica; Cesana, Matteo
File allegato/i alla scheda:
File Dimensione del file Formato  
Pimpinella_2020.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 962.77 kB
Formato Adobe PDF
962.77 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/263895
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact