In this paper we continue the investigation of the effect of local search in geometric semantic genetic programming (GSGP), with the introduction of a new general local search operator that can be easily customized. We show that it is able to obtain results on par with the current best-performing GSGP with local search and, in most cases, better than standard GSGP.

(2019). Extending Local Search in Geometric Semantic Genetic Programming . Retrieved from https://hdl.handle.net/10446/265020

Extending Local Search in Geometric Semantic Genetic Programming

Saletta, Martina
2019-01-01

Abstract

In this paper we continue the investigation of the effect of local search in geometric semantic genetic programming (GSGP), with the introduction of a new general local search operator that can be easily customized. We show that it is able to obtain results on par with the current best-performing GSGP with local search and, in most cases, better than standard GSGP.
2019
Inglese
Progress in Artificial Intelligence. 19th EPIA Conference on Artificial Intelligence, EPIA 2019, Vila Real, Portugal, September 3–6, 2019, Proceedings, Part I
Moura Oliveira, Paulo; Novais, Paulo; Reis, Luís Paulo;
9783030302405
11804 LNAI
775
787
cartaceo
online
Switzerland
Cham
Springer Nature Switzerland AG
EPIA 2019, 19th Conference on Artificial Intelligence, Vila Real, Portugal, 3–6 September 2019
19th
Vila Real (Portugal)
3-6 September 2019
internazionale
Settore INF/01 - Informatica
info:eu-repo/semantics/conferenceObject
4
Castelli, Mauro; Manzoni, Luca; Mariot, Luca; Saletta, Martina
1.4 Contributi in atti di convegno - Contributions in conference proceedings::1.4.01 Contributi in atti di convegno - Conference presentations
reserved
Non definito
273
(2019). Extending Local Search in Geometric Semantic Genetic Programming . Retrieved from https://hdl.handle.net/10446/265020
File allegato/i alla scheda:
File Dimensione del file Formato  
Castelli2019_Chapter_ExtendingLocalSearchInGeometric.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 568.26 kB
Formato Adobe PDF
568.26 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/265020
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact