An angular analysis of the B0 → K*0(→ K+π−)μ+μ− decay is presented. The dataset corresponds to an integrated luminosity of 3.0 fb−1 of pp collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine CP-averaged observables and CP asymmetries, taking account of possible contamination from decays with the K+π− system in an S-wave configuration. The angular observables and their correlations are reported in bins of q2, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for q2-dependent decay amplitudes in the region 1.1 < q2 < 6.0 GeV2/c4, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of CP-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions
(2016). Angular analysis of the B0 → K*0μ+μ− decay using 3 fb−1 of integrated luminosity [journal article - articolo]. In JOURNAL OF HIGH ENERGY PHYSICS. Retrieved from https://hdl.handle.net/10446/266131
Angular analysis of the B0 → K*0μ+μ− decay using 3 fb−1 of integrated luminosity
Lupato A;Redi F;
2016-01-01
Abstract
An angular analysis of the B0 → K*0(→ K+π−)μ+μ− decay is presented. The dataset corresponds to an integrated luminosity of 3.0 fb−1 of pp collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine CP-averaged observables and CP asymmetries, taking account of possible contamination from decays with the K+π− system in an S-wave configuration. The angular observables and their correlations are reported in bins of q2, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for q2-dependent decay amplitudes in the region 1.1 < q2 < 6.0 GeV2/c4, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of CP-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictionsFile | Dimensione del file | Formato | |
---|---|---|---|
JHEP02(2016)104.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
6.62 MB
Formato
Adobe PDF
|
6.62 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo