Gaussian mixture models (GMM) are the most-widely employed approach to perform model-based clustering of continuous features. Grievously, with the increasing availability of high-dimensional datasets, their direct applicability is put at stake: GMMs suffer from the curse of dimensionality issue, as the number of parameters grows quadratically with the number of variables. To this extent, a methodological link between Gaussian mixtures and Gaussian graphical models has recently been established in order to provide a framework for performing penalized model-based clustering in presence of large precision matrices. Notwithstanding, current methodologies do not account for the fact that groups may be under or over-connected, thus implicitly assuming similar levels of sparsity across clusters. We overcome this limitation by defining data-driven and component specific penalty factors, automatically accounting for different degrees of connections within groups. A real data experiment on handwritten digits recognition showcases the validity of our proposal.
(2023). Penalized Model-Based Clustering with Group-Dependent Shrinkage Estimation . Retrieved from https://hdl.handle.net/10446/269567
Penalized Model-Based Clustering with Group-Dependent Shrinkage Estimation
Casa, Alessandro;
2023-01-01
Abstract
Gaussian mixture models (GMM) are the most-widely employed approach to perform model-based clustering of continuous features. Grievously, with the increasing availability of high-dimensional datasets, their direct applicability is put at stake: GMMs suffer from the curse of dimensionality issue, as the number of parameters grows quadratically with the number of variables. To this extent, a methodological link between Gaussian mixtures and Gaussian graphical models has recently been established in order to provide a framework for performing penalized model-based clustering in presence of large precision matrices. Notwithstanding, current methodologies do not account for the fact that groups may be under or over-connected, thus implicitly assuming similar levels of sparsity across clusters. We overcome this limitation by defining data-driven and component specific penalty factors, automatically accounting for different degrees of connections within groups. A real data experiment on handwritten digits recognition showcases the validity of our proposal.File | Dimensione del file | Formato | |
---|---|---|---|
Casa et al_Building Bridges.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
382.48 kB
Formato
Adobe PDF
|
382.48 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo