: This systematic review aimed to 1) verify bilateral symmetry assumption in manual wheelchair (MWC) propulsion in daily-life and sports, and its relationship with injury risk and sports performance; 2) evaluate methods for assessing bilateral symmetry. Scopus, Web-Of-Science, PubMed, and EBSCO databases were searched for articles published before January 2024 investigating bilateral symmetry in MWC users and/or healthy participants during MWC propulsion. Two independent reviewers screened, extracted data, and assessed methodological quality of retrieved papers. Twenty-five studies were included. In daily ground-level propulsion, minimal asymmetries were observed in kinematic, kinetic, and temporal parameters when averaging ≥3 push cycles. In the sports context, diverse findings emerged, ranging from up to 27% side-to-side differences in propulsion kinetics and kinematics during sprinting, to descriptions of both symmetrical and asymmetrical upper extremity motions. Limited evidence exists regarding the role of asymmetry in MWC propulsion as a risk factor for injury and pain, as well as the association between sprinting performance and symmetry. In conclusion, bilateral symmetry assumption in MWC propulsion is valid only under specific conditions (i.e., slow/moderate speed, averaging ≥3 push cycles, smooth level ground). The wheeling environment and inter-individual variability impact symmetry research outcome and require consideration in future studies.
(2024). Evaluation of the bilateral symmetry assumption in manual wheelchair propulsion: a systematic review of literature in daily-life and sports contexts [journal article - articolo]. In AMERICAN JOURNAL OF PHYSICAL MEDICINE & REHABILITATION. Retrieved from https://hdl.handle.net/10446/274071
Evaluation of the bilateral symmetry assumption in manual wheelchair propulsion: a systematic review of literature in daily-life and sports contexts
Bergamini, Elena
2024-01-01
Abstract
: This systematic review aimed to 1) verify bilateral symmetry assumption in manual wheelchair (MWC) propulsion in daily-life and sports, and its relationship with injury risk and sports performance; 2) evaluate methods for assessing bilateral symmetry. Scopus, Web-Of-Science, PubMed, and EBSCO databases were searched for articles published before January 2024 investigating bilateral symmetry in MWC users and/or healthy participants during MWC propulsion. Two independent reviewers screened, extracted data, and assessed methodological quality of retrieved papers. Twenty-five studies were included. In daily ground-level propulsion, minimal asymmetries were observed in kinematic, kinetic, and temporal parameters when averaging ≥3 push cycles. In the sports context, diverse findings emerged, ranging from up to 27% side-to-side differences in propulsion kinetics and kinematics during sprinting, to descriptions of both symmetrical and asymmetrical upper extremity motions. Limited evidence exists regarding the role of asymmetry in MWC propulsion as a risk factor for injury and pain, as well as the association between sprinting performance and symmetry. In conclusion, bilateral symmetry assumption in MWC propulsion is valid only under specific conditions (i.e., slow/moderate speed, averaging ≥3 push cycles, smooth level ground). The wheeling environment and inter-individual variability impact symmetry research outcome and require consideration in future studies.File | Dimensione del file | Formato | |
---|---|---|---|
Rum2024_Wheelchair symmetry review_PREPRINT.pdf
Solo gestori di archivio
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Licenza default Aisberg
Dimensione del file
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo