Solving combinatorial problems on complex networks represents a primary issue which, on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods have been proposed in this context to find feasible solutions for relevant computational problems over graphs. However, such methods have some drawbacks: (1) they use the same neural architecture for different combinatorial problems without introducing customizations that reflects the specificity of each problem; (2) they only use a nodes local information to compute the solution; (3) they do not take advantage of common heuristics or exact algorithms. Following this interest, in this research we address these three main points by designing a customized attention-based mechanism that uses both local and global information from the adjacency matrix to find approximate solutions for the Minimum Vertex Cover Problem. We evaluate our proposal with respect to a fast two-factor approximation algorithm and a widely adopted state-of-the-art heuristic both on synthetically generated instances and on benchmark graphs with different scales. Experimental results demonstrate that, on the one hand, the proposed methodology is able to outperform both the two-factor approximation algorithm and the heuristic on the test datasets, scaling even better than the heuristic with harder instances and, on the other hand, is able to provide a representation of the nodes which reflects the combinatorial structure of the problem.

(2024). An Attention-Based Method for the Minimum Vertex Cover Problem on Complex Networks [journal article - articolo]. In ALGORITHMS. Retrieved from https://hdl.handle.net/10446/279250

An Attention-Based Method for the Minimum Vertex Cover Problem on Complex Networks

Dondi, Riccardo;
2024-01-01

Abstract

Solving combinatorial problems on complex networks represents a primary issue which, on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods have been proposed in this context to find feasible solutions for relevant computational problems over graphs. However, such methods have some drawbacks: (1) they use the same neural architecture for different combinatorial problems without introducing customizations that reflects the specificity of each problem; (2) they only use a nodes local information to compute the solution; (3) they do not take advantage of common heuristics or exact algorithms. Following this interest, in this research we address these three main points by designing a customized attention-based mechanism that uses both local and global information from the adjacency matrix to find approximate solutions for the Minimum Vertex Cover Problem. We evaluate our proposal with respect to a fast two-factor approximation algorithm and a widely adopted state-of-the-art heuristic both on synthetically generated instances and on benchmark graphs with different scales. Experimental results demonstrate that, on the one hand, the proposed methodology is able to outperform both the two-factor approximation algorithm and the heuristic on the test datasets, scaling even better than the heuristic with harder instances and, on the other hand, is able to provide a representation of the nodes which reflects the combinatorial structure of the problem.
articolo
2024
Lazzarinetti, G.; Dondi, Riccardo; Manzoni, S.; Zoppis, I.
(2024). An Attention-Based Method for the Minimum Vertex Cover Problem on Complex Networks [journal article - articolo]. In ALGORITHMS. Retrieved from https://hdl.handle.net/10446/279250
File allegato/i alla scheda:
File Dimensione del file Formato  
algorithms2024.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 551.84 kB
Formato Adobe PDF
551.84 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/279250
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact