In this paper we study the regularity of the Szegő projection on Lebesgue and Sobolev spaces on the distinguished boundary of the unbounded model worm domain Dβ. We denote by db(Dβ) the distinguished boundary of Dβ and define the corresponding Hardy space H2(Dβ). This can be identified with a closed subspace of L2(db(Dβ) , dσ) , that we denote by H2(db(Dβ)) , where dσ is the naturally induced measure on db(Dβ). The orthogonal Hilbert space projection P: L2(db(Dβ) , dσ) → H2(db(Dβ)) is called the Szegő projection on the distinguished boundary. We prove that P, initially defined on the dense subspace L2∩ Lp(db(Dβ) , dσ) extends to a bounded operator P: Lp(db(Dβ) , dσ) → Lp(db(Dβ) , dσ) if and only if 21+p<21-νβ where νβ=π2β- Furthermore, we also prove that P defines a bounded operator P: Ws,2(db(Dβ) , dσ) → Ws,2(db(Dβ) , dσ) if and only if 0≤s2 where Ws.2(db(Dβ) , dσ) denotes the Sobolev space of order s and underlying L2-norm. Finally, we prove a necessary condition for the boundedness of P on Ws,p(db(Dβ) , dσ) , p∈ (1 , ∞) , the Sobolev space of order s and underlying Lp-norm.
(2017). Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains [journal article - articolo]. In INTEGRAL EQUATIONS AND OPERATOR THEORY. Retrieved from https://hdl.handle.net/10446/279550
Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains
Monguzzi ,Alessandro;
2017-01-01
Abstract
In this paper we study the regularity of the Szegő projection on Lebesgue and Sobolev spaces on the distinguished boundary of the unbounded model worm domain Dβ. We denote by db(Dβ) the distinguished boundary of Dβ and define the corresponding Hardy space H2(Dβ). This can be identified with a closed subspace of L2(db(Dβ) , dσ) , that we denote by H2(db(Dβ)) , where dσ is the naturally induced measure on db(Dβ). The orthogonal Hilbert space projection P: L2(db(Dβ) , dσ) → H2(db(Dβ)) is called the Szegő projection on the distinguished boundary. We prove that P, initially defined on the dense subspace L2∩ Lp(db(Dβ) , dσ) extends to a bounded operator P: Lp(db(Dβ) , dσ) → Lp(db(Dβ) , dσ) if and only if 21+p<21-νβ where νβ=π2β- Furthermore, we also prove that P defines a bounded operator P: Ws,2(db(Dβ) , dσ) → Ws,2(db(Dβ) , dσ) if and only if 0≤s2 where Ws.2(db(Dβ) , dσ) denotes the Sobolev space of order s and underlying L2-norm. Finally, we prove a necessary condition for the boundedness of P on Ws,p(db(Dβ) , dσ) , p∈ (1 , ∞) , the Sobolev space of order s and underlying Lp-norm.File | Dimensione del file | Formato | |
---|---|---|---|
2017 - Monguzzi & Peloso - Sharp Estimates for the Szego Projection on the Distinguished Boundary of Model Worm Domains.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
706.71 kB
Formato
Adobe PDF
|
706.71 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo