In this paper we study the regularity of the Szegő projection on Lebesgue and Sobolev spaces on the distinguished boundary of the unbounded model worm domain Dβ. We denote by db(Dβ) the distinguished boundary of Dβ and define the corresponding Hardy space H2(Dβ). This can be identified with a closed subspace of L2(db(Dβ) , dσ) , that we denote by H2(db(Dβ)) , where dσ is the naturally induced measure on db(Dβ). The orthogonal Hilbert space projection P: L2(db(Dβ) , dσ) → H2(db(Dβ)) is called the Szegő projection on the distinguished boundary. We prove that P, initially defined on the dense subspace L2∩ Lp(db(Dβ) , dσ) extends to a bounded operator P: Lp(db(Dβ) , dσ) → Lp(db(Dβ) , dσ) if and only if 21+p<21-νβ where νβ=π2β- Furthermore, we also prove that P defines a bounded operator P: Ws,2(db(Dβ) , dσ) → Ws,2(db(Dβ) , dσ) if and only if 0≤s2 where Ws.2(db(Dβ) , dσ) denotes the Sobolev space of order s and underlying L2-norm. Finally, we prove a necessary condition for the boundedness of P on Ws,p(db(Dβ) , dσ) , p∈ (1 , ∞) , the Sobolev space of order s and underlying Lp-norm.

(2017). Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains [journal article - articolo]. In INTEGRAL EQUATIONS AND OPERATOR THEORY. Retrieved from https://hdl.handle.net/10446/279550

Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains

Monguzzi ,Alessandro;
2017-01-01

Abstract

In this paper we study the regularity of the Szegő projection on Lebesgue and Sobolev spaces on the distinguished boundary of the unbounded model worm domain Dβ. We denote by db(Dβ) the distinguished boundary of Dβ and define the corresponding Hardy space H2(Dβ). This can be identified with a closed subspace of L2(db(Dβ) , dσ) , that we denote by H2(db(Dβ)) , where dσ is the naturally induced measure on db(Dβ). The orthogonal Hilbert space projection P: L2(db(Dβ) , dσ) → H2(db(Dβ)) is called the Szegő projection on the distinguished boundary. We prove that P, initially defined on the dense subspace L2∩ Lp(db(Dβ) , dσ) extends to a bounded operator P: Lp(db(Dβ) , dσ) → Lp(db(Dβ) , dσ) if and only if 21+p<21-νβ where νβ=π2β- Furthermore, we also prove that P defines a bounded operator P: Ws,2(db(Dβ) , dσ) → Ws,2(db(Dβ) , dσ) if and only if 0≤s2 where Ws.2(db(Dβ) , dσ) denotes the Sobolev space of order s and underlying L2-norm. Finally, we prove a necessary condition for the boundedness of P on Ws,p(db(Dβ) , dσ) , p∈ (1 , ∞) , the Sobolev space of order s and underlying Lp-norm.
articolo
2017
Monguzzi, Alessandro; Peloso, M. M.
(2017). Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains [journal article - articolo]. In INTEGRAL EQUATIONS AND OPERATOR THEORY. Retrieved from https://hdl.handle.net/10446/279550
File allegato/i alla scheda:
File Dimensione del file Formato  
2017 - Monguzzi & Peloso - Sharp Estimates for the Szego Projection on the Distinguished Boundary of Model Worm Domains.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 706.71 kB
Formato Adobe PDF
706.71 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/279550
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact