Very high-bypass ratio turbofans with large fan tip diameter are an effective way of improving the propulsive efficiency of civil aero-engines. Such engines, however, require larger and heavier nacelles, which partially offset any gains in specific fuel consumptions. This drawback can be mitigated by adopting thinner walls for the nacelle and by shortening the intake section. This binds the success of very high-bypass ratio technologies to the problem of designing an intake with thin lips and short diffuser section which is well matched to a low speed fan. Consequently the prediction of the mutual influence between the fan and the intake flow represents a crucial step in the design process. Considerable effort has been devoted in recent years to the study of models for the effects of the fan on the lip stall characteristics and the operability of the whole installation. The study of such models is motivated by the wish to avoid the costs incurred by full, three-dimensional CFD computat...
(2017). Fan Similarity Model for the Fan-Intake Interaction Problem . Retrieved from https://hdl.handle.net/10446/281154
Fan Similarity Model for the Fan-Intake Interaction Problem
Carnevale, Mauro;
2017-01-01
Abstract
Very high-bypass ratio turbofans with large fan tip diameter are an effective way of improving the propulsive efficiency of civil aero-engines. Such engines, however, require larger and heavier nacelles, which partially offset any gains in specific fuel consumptions. This drawback can be mitigated by adopting thinner walls for the nacelle and by shortening the intake section. This binds the success of very high-bypass ratio technologies to the problem of designing an intake with thin lips and short diffuser section which is well matched to a low speed fan. Consequently the prediction of the mutual influence between the fan and the intake flow represents a crucial step in the design process. Considerable effort has been devoted in recent years to the study of models for the effects of the fan on the lip stall characteristics and the operability of the whole installation. The study of such models is motivated by the wish to avoid the costs incurred by full, three-dimensional CFD computat...| File | Dimensione del file | Formato | |
|---|---|---|---|
|
v001t01a019-gt2017-63868_FanSim_C.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
3.65 MB
Formato
Adobe PDF
|
3.65 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

