This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb−1 of LHC proton-proton collision data recorded at √s = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET ∼ 10 GeV, and 0.3% at ET ∼ 1 TeV; for photons at ET ∼ 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/ → ee and radiative Z-boson decays.

(2024). Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data [journal article - articolo]. In JOURNAL OF INSTRUMENTATION. Retrieved from https://hdl.handle.net/10446/283169

Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data

Lupato A.;
2024-01-01

Abstract

This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb−1 of LHC proton-proton collision data recorded at √s = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET ∼ 10 GeV, and 0.3% at ET ∼ 1 TeV; for photons at ET ∼ 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/ → ee and radiative Z-boson decays.
articolo
2024
Aad, G.; Abbott, B.; Abeling, K.; Abicht, N. J.; Abidi, S. H.; Aboulhorma, A.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Bourdarios, C....espandi
(2024). Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data [journal article - articolo]. In JOURNAL OF INSTRUMENTATION. Retrieved from https://hdl.handle.net/10446/283169
File allegato/i alla scheda:
File Dimensione del file Formato  
Aad_2024_J._Inst._19_P02009.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/283169
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact