In the paradigm of Industry 4.0, innovative workplaces characterized by Human-Robot Collaboration represent an important topic to improve productivity and adaptability of manufacturing plants. In this context, the design of a collaborative workplace is a challenging issue because of the high level of complexity due to multidisciplinary and non-homogeneity of its features, as well as the presence of human very close to the robot. This work faces with the complexity of collaborative workplace and proposes a structured framework to support strategic decisions in designing. It suggests a clusterization of factors and effects, based on five domains involved in collaborative workplace, in order to better consider the human safety and working conditions. Consequently, the main elements of a collaborative workplace are highlighted in a matrix decomposed in relevant features and main incident factors, and a multi-level designing workflow is described to report collaborative performances. The proposed approach manages connections among the elements by means of the graph theory in the form of an adjacency matrix in order to show and manage the complexity of the problem. A user interface named Smart Graph Interface was developed to read and manipulate the contents of the adjacency matrix. Main results are reported on an assembly and sealing of a refrigerator, to spread out principal outcomes in terms of applicability and robustness.
(2022). A Graph-Based Multi-level Framework to Support the Designing of Collaborative Workplaces . Retrieved from https://hdl.handle.net/10446/285729
A Graph-Based Multi-level Framework to Support the Designing of Collaborative Workplaces
Di Marino, Castrese;
2022-01-01
Abstract
In the paradigm of Industry 4.0, innovative workplaces characterized by Human-Robot Collaboration represent an important topic to improve productivity and adaptability of manufacturing plants. In this context, the design of a collaborative workplace is a challenging issue because of the high level of complexity due to multidisciplinary and non-homogeneity of its features, as well as the presence of human very close to the robot. This work faces with the complexity of collaborative workplace and proposes a structured framework to support strategic decisions in designing. It suggests a clusterization of factors and effects, based on five domains involved in collaborative workplace, in order to better consider the human safety and working conditions. Consequently, the main elements of a collaborative workplace are highlighted in a matrix decomposed in relevant features and main incident factors, and a multi-level designing workflow is described to report collaborative performances. The proposed approach manages connections among the elements by means of the graph theory in the form of an adjacency matrix in order to show and manage the complexity of the problem. A user interface named Smart Graph Interface was developed to read and manipulate the contents of the adjacency matrix. Main results are reported on an assembly and sealing of a refrigerator, to spread out principal outcomes in terms of applicability and robustness.File | Dimensione del file | Formato | |
---|---|---|---|
978-3-030-91234-5_compressed (1).pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
360.33 kB
Formato
Adobe PDF
|
360.33 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo