Human–robot collaboration (HRC) solutions are replacing classic industrial robot due to the possibility of realizing more flexible production systems. Collaborative robot systems, named cobot, can work side by side with humans combining their strengths. However, obtaining an efficient HRC is not trivial; indeed, the potential advantages of the collaborative robotics increase as complexity increases. In this context, the main challenge is to design the layout of collaborative workplaces facing the facility layout problem and ensuring the safety of the human being. To move through the high number of safety standards could be very tiring and unproductive. Therefore, in this work a list of key elements, linked to reference norms and production needs, characterizing the collaborative workplace has been identified. Then, a graph-based approach has been used in order to organize and easily manage this information. The management by means graphs has facilitated the implementation of the acquired knowledge in a code, developed in Matlab environment. This code aims to help the designer in the layout organization of human–robot collaborative workplaces in standards compliance. The paper presents the optimization code, named Smart Positioner, and the operation is explained through a workflow diagram.

(2021). A knowledge-based approach to the layout optimization of human–robot collaborative workplace [journal article - articolo]. In INTERNATIONAL JOURNAL ON INTERACTIVE DESIGN AND MANUFACTURING. Retrieved from https://hdl.handle.net/10446/285749

A knowledge-based approach to the layout optimization of human–robot collaborative workplace

Di Marino, Castrese;
2021-01-01

Abstract

Human–robot collaboration (HRC) solutions are replacing classic industrial robot due to the possibility of realizing more flexible production systems. Collaborative robot systems, named cobot, can work side by side with humans combining their strengths. However, obtaining an efficient HRC is not trivial; indeed, the potential advantages of the collaborative robotics increase as complexity increases. In this context, the main challenge is to design the layout of collaborative workplaces facing the facility layout problem and ensuring the safety of the human being. To move through the high number of safety standards could be very tiring and unproductive. Therefore, in this work a list of key elements, linked to reference norms and production needs, characterizing the collaborative workplace has been identified. Then, a graph-based approach has been used in order to organize and easily manage this information. The management by means graphs has facilitated the implementation of the acquired knowledge in a code, developed in Matlab environment. This code aims to help the designer in the layout organization of human–robot collaborative workplaces in standards compliance. The paper presents the optimization code, named Smart Positioner, and the operation is explained through a workflow diagram.
articolo
2021
Rega, Andrea; Vitolo, F.; DI MARINO, Castrese; Patalano, S.
(2021). A knowledge-based approach to the layout optimization of human–robot collaborative workplace [journal article - articolo]. In INTERNATIONAL JOURNAL ON INTERACTIVE DESIGN AND MANUFACTURING. Retrieved from https://hdl.handle.net/10446/285749
File allegato/i alla scheda:
File Dimensione del file Formato  
s12008-020-00742-0 (1).pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 291.29 kB
Formato Adobe PDF
291.29 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/285749
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact