Friction Stir Welding (FSW) and Friction Stir Processing (FSP) are solid-state joining and material processing techniques that have garnered considerable attention for their versatility and industrial applicability. In the present work, FSP was performed on AA 6056 T4, dealing with the issue of monitoring tool wear and assessing its impact on the process. The impact of tool wear on power requirements was analyzed, and it was expanded the understanding of tool behavior and its implications for the overall process performance. Specifically, variations in energy consumption, temperatures, and vibrations are observed with changing tool conditions. Further insights are provided by analyzing the microhardness and the pin volume ratio, which show distinct trends as the tool wears. Two tool maintenance ways are proposed, that are cleaning the tool with a sodium hydroxide solution and increasing the tool’s rotational speed. Both the strategies exhibit the potential to partially restore the tool’s initial characteristics. This study highlights the critical importance of assessing tool condition, energy consumption, and process sustainability, particularly in industrial settings where material processing requires efficiency and quality assurance.
(2024). Energy Consumption and Tool Condition in Friction Stir Processing of Aluminum Alloys [journal article - articolo]. In INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING GREEN TECHNOLOGY. Retrieved from https://hdl.handle.net/10446/286909
Energy Consumption and Tool Condition in Friction Stir Processing of Aluminum Alloys
Silvestri, Alessia Teresa;
2024-05-04
Abstract
Friction Stir Welding (FSW) and Friction Stir Processing (FSP) are solid-state joining and material processing techniques that have garnered considerable attention for their versatility and industrial applicability. In the present work, FSP was performed on AA 6056 T4, dealing with the issue of monitoring tool wear and assessing its impact on the process. The impact of tool wear on power requirements was analyzed, and it was expanded the understanding of tool behavior and its implications for the overall process performance. Specifically, variations in energy consumption, temperatures, and vibrations are observed with changing tool conditions. Further insights are provided by analyzing the microhardness and the pin volume ratio, which show distinct trends as the tool wears. Two tool maintenance ways are proposed, that are cleaning the tool with a sodium hydroxide solution and increasing the tool’s rotational speed. Both the strategies exhibit the potential to partially restore the tool’s initial characteristics. This study highlights the critical importance of assessing tool condition, energy consumption, and process sustainability, particularly in industrial settings where material processing requires efficiency and quality assurance.File | Dimensione del file | Formato | |
---|---|---|---|
s40684-024-00633-9.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
4.6 MB
Formato
Adobe PDF
|
4.6 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo