Microgrids are a development trend and have attracted a lot of attention worldwide. The control system plays a crucial role in implementing these systems and, due to their complexity, artificial intelligence techniques represent some enabling technologies for their future development and success. In this paper, we propose a novel formulation of an economic model predictive control (economic MPC) applied to a microgrid designed for a faculty building with the inclusion of a predictive model to deal with the energy demand disturbance using a recurrent neural network of the long short-term memory (RNN-LSTM). First, we develop a framework to identify an RNN-LSTM using historical data registered by a smart three-phase power quality analyzer to provide feedforward power demand predictions. Next, we present an economic MPC formulation that includes the prediction model for the disturbance within the optimization problem to be solved by the MPC strategy. We carried out simulations with different scenarios of energy consumption, available resources, and simulation times to highlight the results obtained and analyze the performance of the energy management system. In all cases, we observed the correct operation of the proposed control scheme, complying at all times with the objectives and operational restrictions imposed on the system
(2024). Artificial Neural Networks for Energy Demand Prediction in an Economic MPC‐Based Energy Management System [journal article - articolo]. In INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL. Retrieved from https://hdl.handle.net/10446/287599
Artificial Neural Networks for Energy Demand Prediction in an Economic MPC‐Based Energy Management System
Ferramosca, Antonio
2024-10-20
Abstract
Microgrids are a development trend and have attracted a lot of attention worldwide. The control system plays a crucial role in implementing these systems and, due to their complexity, artificial intelligence techniques represent some enabling technologies for their future development and success. In this paper, we propose a novel formulation of an economic model predictive control (economic MPC) applied to a microgrid designed for a faculty building with the inclusion of a predictive model to deal with the energy demand disturbance using a recurrent neural network of the long short-term memory (RNN-LSTM). First, we develop a framework to identify an RNN-LSTM using historical data registered by a smart three-phase power quality analyzer to provide feedforward power demand predictions. Next, we present an economic MPC formulation that includes the prediction model for the disturbance within the optimization problem to be solved by the MPC strategy. We carried out simulations with different scenarios of energy consumption, available resources, and simulation times to highlight the results obtained and analyze the performance of the energy management system. In all cases, we observed the correct operation of the proposed control scheme, complying at all times with the objectives and operational restrictions imposed on the systemFile | Dimensione del file | Formato | |
---|---|---|---|
Intl J Robust Nonlinear - 2024 - Alarcón - Artificial Neural Networks for Energy Demand Prediction in an Economic.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo