The synthesis of Ag nanoparticles from Ag+ has been investigated, with pectin acting both as reductant and coating. ∼100% Ag+ to Ag(0) one-pot conversion was obtained, yielding p-AgNP, i.e. an aqueous solution of pectin-coated spherical Ag nanoparticles (d = 8.0 ± 2.6 nm), with a < 1 ppm concentration of free Ag+ cation. Despite the low free Ag+ concentration and low Ag+ release with time, the nature of the coating allows p-AgNP to exert excellent antibacterial and antibiofilm actions, comparable to those of ionic silver, tested on E. coli (Gram−) and S. epidermidis (Gram+) both on planctonic cells and on pre- and post-biofilm formation conditions. Moreover, p-AgNP were tested on fibroblasts: not only p-AgNP were found to be cytocompatible but also revealed capable of promoting fibroblasts proliferation and to be effective for wound healing on model cultures. The antibacterial activity and the wound healing ability of silver nanoparticles are two apparently irreconcilable properties, as the former usually requires a high sustained Ag+ release while the latter requires low Ag+ concentration. p-AgNP represents an excellent compromise between opposite requirements, candidating as an efficient medication for repairing wounds and/or to treat vulnerable surgical site tissues, including the pre-treatment of implants as an effective prophylaxis in implant surgery.

(2017). Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties [journal article - articolo]. In JOURNAL OF COLLOID AND INTERFACE SCIENCE. Retrieved from https://hdl.handle.net/10446/287608

Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties

D'Agostino, Agnese;
2017-01-01

Abstract

The synthesis of Ag nanoparticles from Ag+ has been investigated, with pectin acting both as reductant and coating. ∼100% Ag+ to Ag(0) one-pot conversion was obtained, yielding p-AgNP, i.e. an aqueous solution of pectin-coated spherical Ag nanoparticles (d = 8.0 ± 2.6 nm), with a < 1 ppm concentration of free Ag+ cation. Despite the low free Ag+ concentration and low Ag+ release with time, the nature of the coating allows p-AgNP to exert excellent antibacterial and antibiofilm actions, comparable to those of ionic silver, tested on E. coli (Gram−) and S. epidermidis (Gram+) both on planctonic cells and on pre- and post-biofilm formation conditions. Moreover, p-AgNP were tested on fibroblasts: not only p-AgNP were found to be cytocompatible but also revealed capable of promoting fibroblasts proliferation and to be effective for wound healing on model cultures. The antibacterial activity and the wound healing ability of silver nanoparticles are two apparently irreconcilable properties, as the former usually requires a high sustained Ag+ release while the latter requires low Ag+ concentration. p-AgNP represents an excellent compromise between opposite requirements, candidating as an efficient medication for repairing wounds and/or to treat vulnerable surgical site tissues, including the pre-treatment of implants as an effective prophylaxis in implant surgery.
articolo
2017
Pallavicini, Piersandro; Arciola, C. R.; Bertoglio, Federico; Curtosi, S.; Dacarro, Giacomo; D'Agostino, Agnese; Ferrari, Franca; Merli, Daniele; Mila...espandi
(2017). Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties [journal article - articolo]. In JOURNAL OF COLLOID AND INTERFACE SCIENCE. Retrieved from https://hdl.handle.net/10446/287608
File allegato/i alla scheda:
File Dimensione del file Formato  
2017 - J Colloids Interf Sci - Silver nanoparticles synthesized and coated with pectin.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 2.85 MB
Formato Adobe PDF
2.85 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/287608
Citazioni
  • Scopus 114
  • ???jsp.display-item.citation.isi??? 98
social impact