The ratio of the B-s(0) and B-0 fragmentation fractions, f(s)/f(d), in proton-proton collisions at the LHC, is obtained as a function of B-meson transverse momentum and collision center-of-mass energy from the combined analysis of different B-decay channels measured by the LHCb experiment. The results are described by a linear function of the meson transverse momentum or with a function inspired by Tsallis statistics. Precise measurements of the branching fractions of the B-s(0) -> J/psi phi and B-s(0)-> D-s(-)pi(+) decays are performed, reducing their uncertainty by about a factor of 2 with respect to previous world averages. Numerous B-s(0) decay branching fractions, measured at the LHCb experiment, are also updated using the new values of f(s)/f(d) and branching fractions of normalization channels. These results reduce a major source of systematic uncertainty in several searches for new physics performed through measurements of B-s(0) branching fractions.
(2021). Precise measurement of the f(s)/f(d) ratio of fragmentation fractions and of B-s(0) decay branching fractions [journal article - articolo]. In PHYSICAL REVIEW D. Retrieved from https://hdl.handle.net/10446/288163
Precise measurement of the f(s)/f(d) ratio of fragmentation fractions and of B-s(0) decay branching fractions
Lupato A;Redi F;
2021-01-01
Abstract
The ratio of the B-s(0) and B-0 fragmentation fractions, f(s)/f(d), in proton-proton collisions at the LHC, is obtained as a function of B-meson transverse momentum and collision center-of-mass energy from the combined analysis of different B-decay channels measured by the LHCb experiment. The results are described by a linear function of the meson transverse momentum or with a function inspired by Tsallis statistics. Precise measurements of the branching fractions of the B-s(0) -> J/psi phi and B-s(0)-> D-s(-)pi(+) decays are performed, reducing their uncertainty by about a factor of 2 with respect to previous world averages. Numerous B-s(0) decay branching fractions, measured at the LHCb experiment, are also updated using the new values of f(s)/f(d) and branching fractions of normalization channels. These results reduce a major source of systematic uncertainty in several searches for new physics performed through measurements of B-s(0) branching fractions.File | Dimensione del file | Formato | |
---|---|---|---|
PhysRevD.104.032005.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
685.55 kB
Formato
Adobe PDF
|
685.55 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo