Dark matter is a well-established theoretical addition to the Standard Model supported by many observations in modern astrophysics and cosmology. In this context, the existence of weakly interacting massive particles represents an appealing solution to the observed thermal relic in the Universe. Indeed, a large experimental campaign is ongoing for the detection of such particles in the sub-GeV mass range. Adopting the benchmark scenario for light dark matter particles produced in the decay of a dark photon, with alpha(D) = 0.1 and m(A ') = 3m(chi), we study the potential of the SHiP experiment to detect such elusive particles through its Scattering and Neutrino detector (SND). In its 5-years run, corresponding to 2 center dot 10(20) protons on target from the CERN SPS, we find that SHiP will improve the current limits in the mass range for the dark matter from about 1 MeV to 300 MeV. In particular, we show that SHiP will probe the thermal target for Majorana candidates in most of this mass window and even reach the Pseudo-Dirac thermal relic.

(2021). Sensitivity of the SHiP experiment to light dark matter [journal article - articolo]. In JOURNAL OF HIGH ENERGY PHYSICS. Retrieved from https://hdl.handle.net/10446/288164

Sensitivity of the SHiP experiment to light dark matter

Redi F;
2021-01-01

Abstract

Dark matter is a well-established theoretical addition to the Standard Model supported by many observations in modern astrophysics and cosmology. In this context, the existence of weakly interacting massive particles represents an appealing solution to the observed thermal relic in the Universe. Indeed, a large experimental campaign is ongoing for the detection of such particles in the sub-GeV mass range. Adopting the benchmark scenario for light dark matter particles produced in the decay of a dark photon, with alpha(D) = 0.1 and m(A ') = 3m(chi), we study the potential of the SHiP experiment to detect such elusive particles through its Scattering and Neutrino detector (SND). In its 5-years run, corresponding to 2 center dot 10(20) protons on target from the CERN SPS, we find that SHiP will improve the current limits in the mass range for the dark matter from about 1 MeV to 300 MeV. In particular, we show that SHiP will probe the thermal target for Majorana candidates in most of this mass window and even reach the Pseudo-Dirac thermal relic.
articolo
2021
Ahdida, C; Akmete, A; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, Jj; Bagulya, A; Dos Santos, Fb; Baran...espandi
(2021). Sensitivity of the SHiP experiment to light dark matter [journal article - articolo]. In JOURNAL OF HIGH ENERGY PHYSICS. Retrieved from https://hdl.handle.net/10446/288164
File allegato/i alla scheda:
File Dimensione del file Formato  
JHEP04(2021)199.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/288164
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 16
social impact