This paper is devoted to the grazing collision limit of the inelastic Kac model introduced in [A. Pulvirenti and G. Toscani, J. Statist. Phys., 14 (2004), pp. 1453–1480], when the equilibrium distribution function is a heavy-tailed Lévy-type distribution with infinite variance. We prove that solutions in an appropriate domain of attraction of the equilibrium distribution converge to solutions of a Fokker–Planck equation with a fractional diffusion operator.

The Grazing Collision Limit of the Inelastic Kac Model around a Lévy-type Equilibrium

FURIOLI, Giulia Maria Dalia;
2012-01-01

Abstract

This paper is devoted to the grazing collision limit of the inelastic Kac model introduced in [A. Pulvirenti and G. Toscani, J. Statist. Phys., 14 (2004), pp. 1453–1480], when the equilibrium distribution function is a heavy-tailed Lévy-type distribution with infinite variance. We prove that solutions in an appropriate domain of attraction of the equilibrium distribution converge to solutions of a Fokker–Planck equation with a fractional diffusion operator.
journal article - articolo
2012
Furioli, Giulia Maria Dalia; Pulvirenti, Ada; Terraneo, Elide; Toscani, Giuseppe
File allegato/i alla scheda:
File Dimensione del file Formato  
FPTT-finale.pdf

Solo gestori di archivio

Descrizione: author's postprint - versione referata
Dimensione del file 373.54 kB
Formato Adobe PDF
373.54 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/28877
Citazioni
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact