This paper is devoted to the grazing collision limit of the inelastic Kac model introduced in [A. Pulvirenti and G. Toscani, J. Statist. Phys., 14 (2004), pp. 1453–1480], when the equilibrium distribution function is a heavy-tailed Lévy-type distribution with infinite variance. We prove that solutions in an appropriate domain of attraction of the equilibrium distribution converge to solutions of a Fokker–Planck equation with a fractional diffusion operator.
The Grazing Collision Limit of the Inelastic Kac Model around a Lévy-type Equilibrium
FURIOLI, Giulia Maria Dalia;
2012-01-01
Abstract
This paper is devoted to the grazing collision limit of the inelastic Kac model introduced in [A. Pulvirenti and G. Toscani, J. Statist. Phys., 14 (2004), pp. 1453–1480], when the equilibrium distribution function is a heavy-tailed Lévy-type distribution with infinite variance. We prove that solutions in an appropriate domain of attraction of the equilibrium distribution converge to solutions of a Fokker–Planck equation with a fractional diffusion operator.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
FPTT-finale.pdf
Solo gestori di archivio
Descrizione: author's postprint - versione referata
Dimensione del file
373.54 kB
Formato
Adobe PDF
|
373.54 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo