New kinematics of supercoiling of closed filaments as solutions of the elastic energy minimization are proposed. The analysis is based on the thin rod approximation of the linear elastic theory, under conservation of the self-linking number. The elastic energy is evaluated by means of bending contribution and torsional influence. Time evolution functions are described by means of piecewise polynomial transformations based on cubic spline functions. In contrast with traditional interpolation, the parameters, which define the cubic splines representing the evolution functions, are considered as the unknowns in a nonlinear optimization problem. We show how the coiling process is associated with conversion of mean twist energy into bending energy through the passage by an inflexional configuration in relation to geometric characteristics of the filament evolution. These results provide new insights on the folding mechanism and associated energy contents and may find useful applications in folding of macromolecules and DNA packing in cell biology.
Optimal kinematics of a looped filament
MAGGIONI, Francesca;BERTOCCHI, Maria
2013-01-01
Abstract
New kinematics of supercoiling of closed filaments as solutions of the elastic energy minimization are proposed. The analysis is based on the thin rod approximation of the linear elastic theory, under conservation of the self-linking number. The elastic energy is evaluated by means of bending contribution and torsional influence. Time evolution functions are described by means of piecewise polynomial transformations based on cubic spline functions. In contrast with traditional interpolation, the parameters, which define the cubic splines representing the evolution functions, are considered as the unknowns in a nonlinear optimization problem. We show how the coiling process is associated with conversion of mean twist energy into bending energy through the passage by an inflexional configuration in relation to geometric characteristics of the filament evolution. These results provide new insights on the folding mechanism and associated energy contents and may find useful applications in folding of macromolecules and DNA packing in cell biology.File | Dimensione del file | Formato | |
---|---|---|---|
art%3A10.1007%2Fs10957-013-0330-8.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
787.88 kB
Formato
Adobe PDF
|
787.88 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo