Background: The detection of explosives in crime scene investigations is critical for forensic science. This study explores the application of laser desorption (LD) ion mobility spectrometry (IMS) as a novel method for this purpose utilising a new IMS prototype developed by MaSaTECH. Methods: The LD sampling technique employs a laser diode module to vaporise explosive traces on surfaces, allowing immediate analysis by IMS without sample preparation. Chemometric approaches, including multivariate data analysis, were utilised for data processing and interpretation, including pre-processing of raw IMS plasmagrams and various pattern recognition techniques, such as linear discriminant analysis (LDA) and support vector machines (SVMs). Results: The IMS prototype was validated through experiments with pure explosives (TNT, RDX, PETN) and explosive products (SEMTEX 1A, C4) on different materials. The study found that the pre-processing method significantly impacts classification accuracy, with the PCA-LDA model demonstrating the best performance for real-world applications. Conclusions: The LD-IMS prototype, coupled with effective chemometric techniques, presents a promising methodology for the detection of explosives in forensic investigations, enhancing the reliability of field applications.
(2025). Laser Desorption-Ion Mobility Spectrometry of Explosives for Forensic and Security Applications [journal article - articolo]. In MOLECULES. Retrieved from https://hdl.handle.net/10446/293369
Laser Desorption-Ion Mobility Spectrometry of Explosives for Forensic and Security Applications
Romolo, Francesco Saverio
2025-01-01
Abstract
Background: The detection of explosives in crime scene investigations is critical for forensic science. This study explores the application of laser desorption (LD) ion mobility spectrometry (IMS) as a novel method for this purpose utilising a new IMS prototype developed by MaSaTECH. Methods: The LD sampling technique employs a laser diode module to vaporise explosive traces on surfaces, allowing immediate analysis by IMS without sample preparation. Chemometric approaches, including multivariate data analysis, were utilised for data processing and interpretation, including pre-processing of raw IMS plasmagrams and various pattern recognition techniques, such as linear discriminant analysis (LDA) and support vector machines (SVMs). Results: The IMS prototype was validated through experiments with pure explosives (TNT, RDX, PETN) and explosive products (SEMTEX 1A, C4) on different materials. The study found that the pre-processing method significantly impacts classification accuracy, with the PCA-LDA model demonstrating the best performance for real-world applications. Conclusions: The LD-IMS prototype, coupled with effective chemometric techniques, presents a promising methodology for the detection of explosives in forensic investigations, enhancing the reliability of field applications.File | Dimensione del file | Formato | |
---|---|---|---|
2025-Laser Desorption-Ion Mobility Spectrometry of Explosives for Forensic and Security Applications-molecules-30-00138.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
2.55 MB
Formato
Adobe PDF
|
2.55 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo