In this work, we find exact gravastar solutions in the context of noncommutative geometry, and explore their physical properties and characteristics. The energy density of these geometries is a smeared and particle-like gravitational source, where the mass is diffused throughout a region of linear dimension α−√ due to the intrinsic uncertainty encoded in the coordinate commutator. These solutions are then matched to an exterior Schwarzschild spacetime. We further explore the dynamical stability of the transition layer of these gravastars, for the specific case of β = M 2/α < 1.9, where M is the black hole mass, to linearized spherically symmetric radial perturbations about static equilibrium solutions. It is found that large stability regions exist and, in particular, located sufficiently close to where the event horizon is expected to form.
(2013). Linearized stability analysis of gravastars in noncommutative geometry [journal article - articolo]. In JOURNAL OF HIGH ENERGY PHYSICS. Retrieved from http://hdl.handle.net/10446/29366
Linearized stability analysis of gravastars in noncommutative geometry
GARATTINI, Remo;
2013-01-01
Abstract
In this work, we find exact gravastar solutions in the context of noncommutative geometry, and explore their physical properties and characteristics. The energy density of these geometries is a smeared and particle-like gravitational source, where the mass is diffused throughout a region of linear dimension α−√ due to the intrinsic uncertainty encoded in the coordinate commutator. These solutions are then matched to an exterior Schwarzschild spacetime. We further explore the dynamical stability of the transition layer of these gravastars, for the specific case of β = M 2/α < 1.9, where M is the black hole mass, to linearized spherically symmetric radial perturbations about static equilibrium solutions. It is found that large stability regions exist and, in particular, located sufficiently close to where the event horizon is expected to form.File | Dimensione del file | Formato | |
---|---|---|---|
1004.2520.pdf
Solo gestori di archivio
Descrizione: author's postprint - versione referata
Dimensione del file
157.9 kB
Formato
Adobe PDF
|
157.9 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo