Given the significant damage caused by earthquakes over the years, accurate prediction and assessment of the extent of structural damage is critical to ensure safety and guide post-disaster recovery efforts. This study examines the effectiveness and reliability of various damage indexes for reinforced concrete buildings, particularly in the context of seismic events. It highlights the potential of these indexes for future use in digital twin applications or for direct analysis of sensor data recorded during an earthquake, with the ultimate goal of improving real-time damage assessment and decision making. A comprehensive literature review was carried out looking at the damage indexes developed over the last decades. These indexes were applied to a case study involving an RC building with three different structural configurations: a pre-code moment-resisting frame, a code-compliant moment-resisting frame, and a code-compliant shear wall system, both bare and infilled with masonry. The seismic performance of these configurations was evaluated using Multi-Stripe Analyses (MSA) to account for the variability of the seismic input. The results of applying the damage indexes highlight the versatility of these indexes in detecting damage, although some limitations were noted, particularly with cycle-related indicators and their application to infilled structures. The study emphasizes the importance of refining these tools to improve their accuracy and reliability in different structural contexts, ultimately contributing to more accurate seismic damage assessment and damage prediction for specific seismic scenarios.
(2025). Assessing the Suitability of Damage Indexes for Digital Twin Applications in RC Buildings Considering Masonry Infills [journal article - articolo]. In APPLIED SCIENCES. Retrieved from https://hdl.handle.net/10446/296366
Assessing the Suitability of Damage Indexes for Digital Twin Applications in RC Buildings Considering Masonry Infills
Danesi, Luca;Belleri, Andrea;Gualdi, Michelle;Labò, Simone
2025-01-01
Abstract
Given the significant damage caused by earthquakes over the years, accurate prediction and assessment of the extent of structural damage is critical to ensure safety and guide post-disaster recovery efforts. This study examines the effectiveness and reliability of various damage indexes for reinforced concrete buildings, particularly in the context of seismic events. It highlights the potential of these indexes for future use in digital twin applications or for direct analysis of sensor data recorded during an earthquake, with the ultimate goal of improving real-time damage assessment and decision making. A comprehensive literature review was carried out looking at the damage indexes developed over the last decades. These indexes were applied to a case study involving an RC building with three different structural configurations: a pre-code moment-resisting frame, a code-compliant moment-resisting frame, and a code-compliant shear wall system, both bare and infilled with masonry. The seismic performance of these configurations was evaluated using Multi-Stripe Analyses (MSA) to account for the variability of the seismic input. The results of applying the damage indexes highlight the versatility of these indexes in detecting damage, although some limitations were noted, particularly with cycle-related indicators and their application to infilled structures. The study emphasizes the importance of refining these tools to improve their accuracy and reliability in different structural contexts, ultimately contributing to more accurate seismic damage assessment and damage prediction for specific seismic scenarios.File | Dimensione del file | Formato | |
---|---|---|---|
applsci-15-01999-v3.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
7.4 MB
Formato
Adobe PDF
|
7.4 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo