This paper describes the characteristics of two hybrid genetic algorithms (GAs) for generating allocation and sequencing of production lots in a flow-shop environment based on a non-linear, multi-criteria objective function. Both GAs are used as search techniques: in the first model the task of the GA is to allocate and sequence the jobs; in the second model, the GA is combined with a dispatching rule (Earliest Due Date, EDD) thus limiting its task only on the allocation of the jobs. Both GAs are characterized by a dynamic population size with dynamic birth rate, as well as by multiple-operator reproduction criteria and by adaptive crossover and mutation rates. A discrete-event simulation model has been used in order to evaluate the performances of the tentative schedules. The proposed algorithms have been subsequently compared with a classical branch and bound method.
(1998). Hybrid genetic algorithms for a multiple-objective scheduling problem [journal article - articolo]. In JOURNAL OF INTELLIGENT MANUFACTURING. Retrieved from http://hdl.handle.net/10446/29696
Hybrid genetic algorithms for a multiple-objective scheduling problem
Cavalieri, Sergio;Gaiardelli, Paolo
1998-01-01
Abstract
This paper describes the characteristics of two hybrid genetic algorithms (GAs) for generating allocation and sequencing of production lots in a flow-shop environment based on a non-linear, multi-criteria objective function. Both GAs are used as search techniques: in the first model the task of the GA is to allocate and sequence the jobs; in the second model, the GA is combined with a dispatching rule (Earliest Due Date, EDD) thus limiting its task only on the allocation of the jobs. Both GAs are characterized by a dynamic population size with dynamic birth rate, as well as by multiple-operator reproduction criteria and by adaptive crossover and mutation rates. A discrete-event simulation model has been used in order to evaluate the performances of the tentative schedules. The proposed algorithms have been subsequently compared with a classical branch and bound method.Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo