We show that a deeper insight into the relations among marginal processes of a multivariate Markov chain can be gained by testing hypotheses of Granger noncausality, contemporaneous independence and monotone dependence. Granger noncausality and contemporaneous independence conditions are read off a mixed graph, and the dependence of an univariate component of the chain on its parents—according to the graph terminology—is described in terms of stochastic dominance criteria. The examined hypotheses are proven to be equivalent to equality and inequality constraints on some parameters of a multivariate logistic model for the transition probabilities. The introduced hypotheses are tested on real categorical time series.
Monotone dependence in graphical models for multivariate Markov chains
COLOMBI, Roberto;
2013-01-01
Abstract
We show that a deeper insight into the relations among marginal processes of a multivariate Markov chain can be gained by testing hypotheses of Granger noncausality, contemporaneous independence and monotone dependence. Granger noncausality and contemporaneous independence conditions are read off a mixed graph, and the dependence of an univariate component of the chain on its parents—according to the graph terminology—is described in terms of stochastic dominance criteria. The examined hypotheses are proven to be equivalent to equality and inequality constraints on some parameters of a multivariate logistic model for the transition probabilities. The introduced hypotheses are tested on real categorical time series.File | Dimensione del file | Formato | |
---|---|---|---|
metrikaoriginale.pdf
Solo gestori di archivio
Descrizione: publisher's version - versione dell'editore
Dimensione del file
252.11 kB
Formato
Adobe PDF
|
252.11 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo