This paper addresses a state dependent switching law for the stabilization of continuous-time, switched affine linear systems satisfying dwell time constraints. Such a law is based on the solution of Lyapunov-Metzler inequalities from which stability conditions are derived. The key point of this law is that the switching rule calculation depends on the evolution forward by the dwell time of quadratic Lyapunov functions assigned to each subsystem. As such, the proposed law is readily applicable to power converters showing that it is an interesting alternative to other switching control techniques.
(2022). State Dependent Switching Control of Affine Linear Systems With Dwell Time: Application to Power Converters . Retrieved from https://hdl.handle.net/10446/299811
State Dependent Switching Control of Affine Linear Systems With Dwell Time: Application to Power Converters
Russo, Antonio;
2022-01-01
Abstract
This paper addresses a state dependent switching law for the stabilization of continuous-time, switched affine linear systems satisfying dwell time constraints. Such a law is based on the solution of Lyapunov-Metzler inequalities from which stability conditions are derived. The key point of this law is that the switching rule calculation depends on the evolution forward by the dwell time of quadratic Lyapunov functions assigned to each subsystem. As such, the proposed law is readily applicable to power converters showing that it is an interesting alternative to other switching control techniques.File | Dimensione del file | Formato | |
---|---|---|---|
ACC22_rg.pdf
Solo gestori di archivio
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Licenza default Aisberg
Dimensione del file
948.64 kB
Formato
Adobe PDF
|
948.64 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo