The uncertainty of important atmospheric parameters is a key factor for assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical points of the uncertainty budget is related to the collocation mismatch in space and time among different observations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or LIDAR. In this paper we consider a statistical modelling approach to understand at which extent collocation uncertainty is related to environmental factors, height and distance between the trajectories. To do this we introduce a new statistical approach, based on the heteroskedastic functional regression (HFR) model which extends the standard functional regression approach and allows us a natural definition of uncertainty profiles. Moreover, using this modelling approach, a five-folded uncertainty decomposition is proposed. Eventually, the HFR approach is illustrated by the collocation uncertainty analysis of relative humidity from two stations involved in GCOS reference upper-air network (GRUAN).

Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles

FASSO', Alessandro;
2013-01-01

Abstract

The uncertainty of important atmospheric parameters is a key factor for assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical points of the uncertainty budget is related to the collocation mismatch in space and time among different observations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or LIDAR. In this paper we consider a statistical modelling approach to understand at which extent collocation uncertainty is related to environmental factors, height and distance between the trajectories. To do this we introduce a new statistical approach, based on the heteroskedastic functional regression (HFR) model which extends the standard functional regression approach and allows us a natural definition of uncertainty profiles. Moreover, using this modelling approach, a five-folded uncertainty decomposition is proposed. Eventually, the HFR approach is illustrated by the collocation uncertainty analysis of relative humidity from two stations involved in GCOS reference upper-air network (GRUAN).
journal article - articolo
2013
Fasso', Alessandro; Ignaccolo, Rosaria; Madonna, Fabio; Demoz, B.
File allegato/i alla scheda:
File Dimensione del file Formato  
Fulltext bianco.pdf

Solo gestori di archivio

Versione: non applicabile
Licenza: Licenza default Aisberg
Dimensione del file 29.25 kB
Formato Adobe PDF
29.25 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/30168
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact