This work aims to design a Gibbs sampling algorithm for posterior Bayesian inference of a Dirichlet process mixture model based on Hamming distributed kernels, a probability measure built upon the Hamming distance. This model is employed to provide model-based clustering analysis of categorical data with no natural ordering. The proposed algorithm leverages a split-and-merge Markov chain Monte Carlo technique to address the curse of dimensionality issue and improve the search over the space of random partitions.

(2025). Split-and-Merge Sampling Algorithm for Hamming-Mixture Models of Categorical Data . Retrieved from https://hdl.handle.net/10446/304869

Split-and-Merge Sampling Algorithm for Hamming-Mixture Models of Categorical Data

Argiento, Raffaele;
2025-06-17

Abstract

This work aims to design a Gibbs sampling algorithm for posterior Bayesian inference of a Dirichlet process mixture model based on Hamming distributed kernels, a probability measure built upon the Hamming distance. This model is employed to provide model-based clustering analysis of categorical data with no natural ordering. The proposed algorithm leverages a split-and-merge Markov chain Monte Carlo technique to address the curse of dimensionality issue and improve the search over the space of random partitions.
raffaele.argiento@unibg.it
17-giu-2025
17-giu-2025
Inglese
Statistics for Innovation III. SIS 2025. Short Papers, Contributed Sessions 2. Italian Statistical Society Series on Advances in Statistics
Di Bella, Enrico; Gioia, Vincenzo; Lagazio, Corrado; Zaccarin, Susanna
978-3-031-95994-3
147
152
online
Switzerland
Cham
Springer
SIS 2025: Conference on Statistics for Innovation, Genoa, Italy, 16-18 June 2025
Genoa, Italy
16-18 June 2025
Settore STAT-01/A - Statistica
Clustering; Hamming distribution; Markov chain Monte Carlo; nominal data;
eISBN 978-3-031-95995-0 eISSN 3059-2143
info:eu-repo/semantics/conferenceObject
5
Di Marino, Sara; Galli, Filippo; Argiento, Raffaele; Cremaschi, Andrea; Paci, Lucia
1.4 Contributi in atti di convegno - Contributions in conference proceedings::1.4.01 Contributi in atti di convegno - Conference presentations
reserved
Non definito
273
(2025). Split-and-Merge Sampling Algorithm for Hamming-Mixture Models of Categorical Data . Retrieved from https://hdl.handle.net/10446/304869
File allegato/i alla scheda:
File Dimensione del file Formato  
Split-and-Merge Sampling.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/304869
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact