We define an evolving in-time Bayesian neural network called a Hidden Markov Neural Network, which addresses the crucial challenge in time-series forecasting and continual learning: striking a balance between adapting to new data and appropriately forgetting outdated information. This is achieved by modelling the weights of a neural network as the hidden states of a Hidden Markov model, with the observed process defined by the available data. A filtering algorithm is employed to learn a variational approximation of the evolving-in-time posterior distribution over the weights. By leveraging a sequential variant of Bayes by Backprop, enriched with a stronger regularization technique called variational DropConnect, Hidden Markov Neural Networks achieve robust regularization and scalable inference. Experiments on MNIST, dynamic classification tasks, and next-frame forecasting in videos demonstrate that Hidden Markov Neural Networks provide strong predictive performance while enabling effective uncertainty quantification.
(2025). Hidden Markov Neural Networks [journal article - articolo]. In ENTROPY. Retrieved from https://hdl.handle.net/10446/305493
Hidden Markov Neural Networks
Rimella, Lorenzo;
2025-01-01
Abstract
We define an evolving in-time Bayesian neural network called a Hidden Markov Neural Network, which addresses the crucial challenge in time-series forecasting and continual learning: striking a balance between adapting to new data and appropriately forgetting outdated information. This is achieved by modelling the weights of a neural network as the hidden states of a Hidden Markov model, with the observed process defined by the available data. A filtering algorithm is employed to learn a variational approximation of the evolving-in-time posterior distribution over the weights. By leveraging a sequential variant of Bayes by Backprop, enriched with a stronger regularization technique called variational DropConnect, Hidden Markov Neural Networks achieve robust regularization and scalable inference. Experiments on MNIST, dynamic classification tasks, and next-frame forecasting in videos demonstrate that Hidden Markov Neural Networks provide strong predictive performance while enabling effective uncertainty quantification.| File | Dimensione del file | Formato | |
|---|---|---|---|
|
entropy-27-00168-v2.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
3.95 MB
Formato
Adobe PDF
|
3.95 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

