This paper presents a novel robust predictive controller for constrained nonlinear systems that is able to track piece-wise constant setpoint signals. The tracking model predictive controller presented in this paper extends the nonlinear MPC for tracking to the more complex case of nonlinear systems subject to bounded and not necessarily additive perturbations. The optimal control problem that is solved at each step penalizes the deviation of the predicted nominal system trajectory from an artificial reference, which is added as a decision variable, as well as the distance between the artificial reference and the setpoint. Robust feasibility is ensured by imposing conservative constraints that take into account the effect of uncertainties and convergence to a neighborhood of any feasible setpoint is guaranteed by means of an appropriate terminal cost and an extended stabilizing terminal constraint. In the case of unreachable setpoints, convergence to a neighborhood of the optimal reachable steady output is also proved.
(2025). Robust tracking MPC for perturbed nonlinear systems [journal article - articolo]. In IEEE TRANSACTIONS ON AUTOMATIC CONTROL. Retrieved from https://hdl.handle.net/10446/307046
Robust tracking MPC for perturbed nonlinear systems
Previdi, Fabio;Ferramosca, Antonio
2025-01-01
Abstract
This paper presents a novel robust predictive controller for constrained nonlinear systems that is able to track piece-wise constant setpoint signals. The tracking model predictive controller presented in this paper extends the nonlinear MPC for tracking to the more complex case of nonlinear systems subject to bounded and not necessarily additive perturbations. The optimal control problem that is solved at each step penalizes the deviation of the predicted nominal system trajectory from an artificial reference, which is added as a decision variable, as well as the distance between the artificial reference and the setpoint. Robust feasibility is ensured by imposing conservative constraints that take into account the effect of uncertainties and convergence to a neighborhood of any feasible setpoint is guaranteed by means of an appropriate terminal cost and an extended stabilizing terminal constraint. In the case of unreachable setpoints, convergence to a neighborhood of the optimal reachable steady output is also proved.| File | Dimensione del file | Formato | |
|---|---|---|---|
|
Robust_tracking_MPC_for_perturbed_nonlinear_systems.pdf
Solo gestori di archivio
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Licenza default Aisberg
Dimensione del file
3.96 MB
Formato
Adobe PDF
|
3.96 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

