Owing to Rosenau argument [28], originally proposed to obtain a regularized version of the Chapman-Enskog expansion of hydrodynamics, we introduce a non-local linear kinetic equation which approximates a fractional diffusion equation. We then show that the solution to this approximation, apart of a rapidly vanishing in time perturbation, approaches the fundamental solution of the fractional diffusion (a Lévy stable law) at large times.
On Rosenau-type approximation to fractional diffusion equations
FURIOLI, Giulia Maria Dalia;
2014-01-01
Abstract
Owing to Rosenau argument [28], originally proposed to obtain a regularized version of the Chapman-Enskog expansion of hydrodynamics, we introduce a non-local linear kinetic equation which approximates a fractional diffusion equation. We then show that the solution to this approximation, apart of a rapidly vanishing in time perturbation, approaches the fundamental solution of the fractional diffusion (a Lévy stable law) at large times.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
quaderno-MS-07-14.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
490.36 kB
Formato
Adobe PDF
|
490.36 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo