Owing to Rosenau argument [28], originally proposed to obtain a regularized version of the Chapman-Enskog expansion of hydrodynamics, we introduce a non-local linear kinetic equation which approximates a fractional diffusion equation. We then show that the solution to this approximation, apart of a rapidly vanishing in time perturbation, approaches the fundamental solution of the fractional diffusion (a Lévy stable law) at large times.
Titolo: | On Rosenau-type approximation to fractional diffusion equations | |
Tutti gli autori: | Furioli, Giulia Maria Dalia; Pulvirenti, Ada; Terraneo, Elide; Toscani, Giuseppe | |
Data di pubblicazione: | 2014 | |
Abstract (eng): | Owing to Rosenau argument [28], originally proposed to obtain a regularized version of the Chapman-Enskog expansion of hydrodynamics, we introduce a non-local linear kinetic equation which approximates a fractional diffusion equation. We then show that the solution to this approximation, apart of a rapidly vanishing in time perturbation, approaches the fundamental solution of the fractional diffusion (a Lévy stable law) at large times. | |
Nelle collezioni: | Working papers ENG. Mathematics and Statistics Series (2013- ) |
File allegato/i alla scheda:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
quaderno-MS-07-14.pdf | publisher's version - versione editoriale | Licenza default Aisberg | Open AccessVisualizza/Apri |
Pubblicazioni consigliate
Loading suggested articles...
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo